February  2018, 11(1): 25-42. doi: 10.3934/krm.2018002

A non-relativistic model of plasma physics containing a radiation reaction term

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  June 2016 Revised  February 2017 Published  August 2017

While a fully relativistic collisionless plasma is modeled by the Vlasov-Maxwell system a good approximation in the non-relativistic limit is given by the Vlasov-Poisson system. We modify the Vlasov-Poisson system so that damping due to the relativistic effect of radiation reaction is included. We prove existence and uniqueness as well as higher regularity of local classical solutions. Our results also include the higher regularity of classical solutions of the Vlasov-Poisson system depending on the regularity of the initial datum.

Citation: Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic and Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002
References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031.

[3]

S. Bauer and M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308.  doi: 10.1007/s00023-005-0207-y.

[4]

S. Bauer and M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551.  doi: 10.1007/3-540-35657-6_19.

[5]

S. BauerM. KunzeG. Rein and A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288.  doi: 10.1007/s00220-006-0015-3.

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.

[7]

Z. Chen and X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879.  doi: 10.1007/s00220-016-2616-9.

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165.  doi: 10.1017/S0305004100054402.

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78.  doi: 10.1017/S0308210500031371.

[11]

M. Kunze and A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587.  doi: 10.1088/0264-9381/18/17/311.

[12]

M. Kunze and A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886.  doi: 10.1007/s00023-001-8596-z.

[13]

M. Kunze and H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396.  doi: 10.1007/s00332-001-0455-z.

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287.  doi: 10.1002/mma.424.

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991.

[16]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476.  doi: 10.1016/S1874-5717(07)80008-9.

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421. 

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.

show all references

References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031.

[3]

S. Bauer and M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308.  doi: 10.1007/s00023-005-0207-y.

[4]

S. Bauer and M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551.  doi: 10.1007/3-540-35657-6_19.

[5]

S. BauerM. KunzeG. Rein and A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288.  doi: 10.1007/s00220-006-0015-3.

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.

[7]

Z. Chen and X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879.  doi: 10.1007/s00220-016-2616-9.

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165.  doi: 10.1017/S0305004100054402.

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78.  doi: 10.1017/S0308210500031371.

[11]

M. Kunze and A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587.  doi: 10.1088/0264-9381/18/17/311.

[12]

M. Kunze and A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886.  doi: 10.1007/s00023-001-8596-z.

[13]

M. Kunze and H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396.  doi: 10.1007/s00332-001-0455-z.

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287.  doi: 10.1002/mma.424.

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991.

[16]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476.  doi: 10.1016/S1874-5717(07)80008-9.

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421. 

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.

[1]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[2]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[3]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[4]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[5]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[6]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[7]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[8]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[9]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[10]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[11]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[12]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[13]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2021021

[14]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[15]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[16]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[17]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

[18]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[19]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[20]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic and Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (168)
  • HTML views (166)
  • Cited by (4)

Other articles
by authors

[Back to Top]