February  2018, 11(1): 25-42. doi: 10.3934/krm.2018002

A non-relativistic model of plasma physics containing a radiation reaction term

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  June 2016 Revised  February 2017 Published  August 2017

While a fully relativistic collisionless plasma is modeled by the Vlasov-Maxwell system a good approximation in the non-relativistic limit is given by the Vlasov-Poisson system. We modify the Vlasov-Poisson system so that damping due to the relativistic effect of radiation reaction is included. We prove existence and uniqueness as well as higher regularity of local classical solutions. Our results also include the higher regularity of classical solutions of the Vlasov-Poisson system depending on the regularity of the initial datum.

Citation: Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic & Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002
References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031. Google Scholar

[3]

S. Bauer and M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308.  doi: 10.1007/s00023-005-0207-y.  Google Scholar

[4]

S. Bauer and M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551.  doi: 10.1007/3-540-35657-6_19.  Google Scholar

[5]

S. BauerM. KunzeG. Rein and A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288.  doi: 10.1007/s00220-006-0015-3.  Google Scholar

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.  Google Scholar

[7]

Z. Chen and X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879.  doi: 10.1007/s00220-016-2616-9.  Google Scholar

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165.  doi: 10.1017/S0305004100054402.  Google Scholar

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.  Google Scholar

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78.  doi: 10.1017/S0308210500031371.  Google Scholar

[11]

M. Kunze and A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587.  doi: 10.1088/0264-9381/18/17/311.  Google Scholar

[12]

M. Kunze and A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886.  doi: 10.1007/s00023-001-8596-z.  Google Scholar

[13]

M. Kunze and H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396.  doi: 10.1007/s00332-001-0455-z.  Google Scholar

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287.  doi: 10.1002/mma.424.  Google Scholar

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991. Google Scholar

[16]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476.  doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421.   Google Scholar

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.  Google Scholar

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.  Google Scholar

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.  Google Scholar

show all references

References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031. Google Scholar

[3]

S. Bauer and M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308.  doi: 10.1007/s00023-005-0207-y.  Google Scholar

[4]

S. Bauer and M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551.  doi: 10.1007/3-540-35657-6_19.  Google Scholar

[5]

S. BauerM. KunzeG. Rein and A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288.  doi: 10.1007/s00220-006-0015-3.  Google Scholar

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.  Google Scholar

[7]

Z. Chen and X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879.  doi: 10.1007/s00220-016-2616-9.  Google Scholar

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165.  doi: 10.1017/S0305004100054402.  Google Scholar

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.  Google Scholar

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78.  doi: 10.1017/S0308210500031371.  Google Scholar

[11]

M. Kunze and A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587.  doi: 10.1088/0264-9381/18/17/311.  Google Scholar

[12]

M. Kunze and A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886.  doi: 10.1007/s00023-001-8596-z.  Google Scholar

[13]

M. Kunze and H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396.  doi: 10.1007/s00332-001-0455-z.  Google Scholar

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287.  doi: 10.1002/mma.424.  Google Scholar

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991. Google Scholar

[16]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476.  doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421.   Google Scholar

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.  Google Scholar

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.  Google Scholar

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.  Google Scholar

[1]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[2]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[5]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[6]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[12]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[15]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[16]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[17]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[18]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[19]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[20]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (77)
  • HTML views (163)
  • Cited by (4)

Other articles
by authors

[Back to Top]