In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic — Vlasov type — equation for the dispersed phase and a — steady — Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun.Math.Sci., 15 (2017), 1703–1741] where the evolution of the gas is governed by the Navier-Stokes equation.
Citation: |
G. Allaire , Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Ⅰ. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990) , 209-259. doi: 10.1007/BF00375065. | |
C. Bardos , F. Golse and C. D. Levermore , Fluid dynamic limits of kinetic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991) , 323-344. doi: 10.1007/BF01026608. | |
E. Bernard , L. Desvillettes , F. Golse and V. Ricci , A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017) , 1703-1741. doi: 10.4310/CMS.2017.v15.n6.a11. | |
J. A. Carrillo , Y.-P. Choi and T. K. Karper , On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016) , 273-307. doi: 10.1016/j.anihpc.2014.10.002. | |
C. Cercignani, Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975. | |
F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 1084 (2009), 409–414. | |
F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application á la Simulation du Transport de Particules de Poussiére en Cas d'Accident de Perte de Vide dans ITER, Ph. D thesis, ENS Cachan, 2009. | |
F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere Math. Models Methods Appl. Sci. 22 (2012), 1150021, 60 pp. | |
Y. -P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems J. Math. Pures Appl. (2017). | |
Y.-P. Choi and B. Kwon , Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015) , 3309-3336. doi: 10.1088/0951-7715/28/9/3309. | |
D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, (French) [A strange term brought from somewhere else], in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2, Research Notes in Mathematics, Pitman, 60 (1982), 98–138. | |
P. Degond and B. Lucquin-Desreux , The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996) , 405-436. doi: 10.1142/S0218202596000158. | |
B. Desjardins and M. J. Esteban , Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999) , 59-71. doi: 10.1007/s002050050136. | |
L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, World Scientific Publications, Singapour, 22 (1994), 191–203. | |
L. Desvillettes , F. Golse and V. Ricci , The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008) , 941-967. doi: 10.1007/s10955-008-9521-3. | |
L. Desvillettes and J. Mathiaud , Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010) , 120-141. doi: 10.1007/s10955-010-0044-3. | |
M. A. Gallis , J. R. Torczyinski and D. J. Rader , An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001) , 3482-3492. doi: 10.1063/1.1409367. | |
D. Gérard-Varet and M. Hillairet , Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010) , 375-407. doi: 10.1007/s00205-008-0202-9. | |
F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations, Springer Proc. Math. Stat. , 75 (2013), 3–91. | |
T. Goudon , P.-E. Jabin and A. Vasseur , Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅰ. Light particles regime, Indiana Univ. Math. J., 53 (2004) , 1495-1515. doi: 10.1512/iumj.2004.53.2508. | |
T. Goudon , P.-E. Jabin and A. Vasseur , Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004) , 1517-1536. doi: 10.1512/iumj.2004.53.2509. | |
K. Hamdache , Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998) , 51-74. doi: 10.1007/BF03167396. | |
M. Hauray , Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009) , 1357-1384. doi: 10.1142/S0218202509003814. | |
M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint, arXiv: 1604. 04379 [math. AP]. | |
P.-E. Jabin and F. Otto , Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004) , 415-432. doi: 10.1007/s00220-004-1126-3. | |
S. Klainerman and A. Majda , Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982) , 629-651. doi: 10.1002/cpa.3160350503. | |
L. D. Landau and E. M. Lifshitz, Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981. | |
P. -L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc. , New York, 1996. | |
P.-L. Lions and N. Masmoudi , Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998) , 585-627. doi: 10.1016/S0021-7824(98)80139-6. | |
V. A. L'vov and E. Ya. Khruslov , Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978) , 173-177. | |
G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms Springer-Verlag, Berlin, 1984. | |
Y. Sone, Molecular Gas Dynamics. Theory, Techniques and Applications Birkhäuser, Boston, 2007. | |
S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, in Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc. , 1628 (2014), 51–59. | |
S. Taguchi , Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015) , 363-394. doi: 10.1017/jfm.2015.265. | |
S. Takata , Y. Sone and K. Aoki , Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993) , 64-93. doi: 10.1063/1.858655. | |
D. Wang and C. Yu , Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015) , 3976-4008. doi: 10.1016/j.jde.2015.05.016. | |
C. Yu , Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013) , 275-293. doi: 10.1016/j.matpur.2013.01.001. |