Advanced Search
Article Contents
Article Contents

A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic — Vlasov type — equation for the dispersed phase and a — steady — Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun.Math.Sci., 15 (2017), 1703–1741] where the evolution of the gas is governed by the Navier-Stokes equation.

    Mathematics Subject Classification: Primary:35Q20, 35B25;Secondary:82C40, 76T15, 76D07.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   G. Allaire , Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Ⅰ. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990) , 209-259.  doi: 10.1007/BF00375065.
      C. Bardos , F. Golse  and  C. D. Levermore , Fluid dynamic limits of kinetic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991) , 323-344.  doi: 10.1007/BF01026608.
      E. Bernard , L. Desvillettes , F. Golse  and  V. Ricci , A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017) , 1703-1741.  doi: 10.4310/CMS.2017.v15.n6.a11.
      J. A. Carrillo , Y.-P. Choi  and  T. K. Karper , On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016) , 273-307.  doi: 10.1016/j.anihpc.2014.10.002.
      C. Cercignani, Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975.
      F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 1084 (2009), 409–414.
      F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application á la Simulation du Transport de Particules de Poussiére en Cas d'Accident de Perte de Vide dans ITER, Ph. D thesis, ENS Cachan, 2009.
      F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere Math. Models Methods Appl. Sci. 22 (2012), 1150021, 60 pp.
      Y. -P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems J. Math. Pures Appl. (2017).
      Y.-P. Choi  and  B. Kwon , Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015) , 3309-3336.  doi: 10.1088/0951-7715/28/9/3309.
      D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, (French) [A strange term brought from somewhere else], in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2, Research Notes in Mathematics, Pitman, 60 (1982), 98–138.
      P. Degond  and  B. Lucquin-Desreux , The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996) , 405-436.  doi: 10.1142/S0218202596000158.
      B. Desjardins  and  M. J. Esteban , Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999) , 59-71.  doi: 10.1007/s002050050136.
      L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, World Scientific Publications, Singapour, 22 (1994), 191–203.
      L. Desvillettes , F. Golse  and  V. Ricci , The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008) , 941-967.  doi: 10.1007/s10955-008-9521-3.
      L. Desvillettes  and  J. Mathiaud , Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010) , 120-141.  doi: 10.1007/s10955-010-0044-3.
      M. A. Gallis , J. R. Torczyinski  and  D. J. Rader , An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001) , 3482-3492.  doi: 10.1063/1.1409367.
      D. Gérard-Varet  and  M. Hillairet , Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010) , 375-407.  doi: 10.1007/s00205-008-0202-9.
      F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations, Springer Proc. Math. Stat. , 75 (2013), 3–91.
      T. Goudon , P.-E. Jabin  and  A. Vasseur , Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅰ. Light particles regime, Indiana Univ. Math. J., 53 (2004) , 1495-1515.  doi: 10.1512/iumj.2004.53.2508.
      T. Goudon , P.-E. Jabin  and  A. Vasseur , Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004) , 1517-1536.  doi: 10.1512/iumj.2004.53.2509.
      K. Hamdache , Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998) , 51-74.  doi: 10.1007/BF03167396.
      M. Hauray , Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009) , 1357-1384.  doi: 10.1142/S0218202509003814.
      M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint, arXiv: 1604. 04379 [math. AP].
      P.-E. Jabin  and  F. Otto , Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004) , 415-432.  doi: 10.1007/s00220-004-1126-3.
      S. Klainerman  and  A. Majda , Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982) , 629-651.  doi: 10.1002/cpa.3160350503.
      L. D. Landau and E. M. Lifshitz, Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981.
      P. -L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc. , New York, 1996.
      P.-L. Lions  and  N. Masmoudi , Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998) , 585-627.  doi: 10.1016/S0021-7824(98)80139-6.
      V. A. L'vov  and  E. Ya. Khruslov , Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978) , 173-177. 
      G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms Springer-Verlag, Berlin, 1984.
      Y. Sone, Molecular Gas Dynamics. Theory, Techniques and Applications Birkhäuser, Boston, 2007.
      S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, in Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc. , 1628 (2014), 51–59.
      S. Taguchi , Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015) , 363-394.  doi: 10.1017/jfm.2015.265.
      S. Takata , Y. Sone  and  K. Aoki , Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993) , 64-93.  doi: 10.1063/1.858655.
      D. Wang  and  C. Yu , Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015) , 3976-4008.  doi: 10.1016/j.jde.2015.05.016.
      C. Yu , Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013) , 275-293.  doi: 10.1016/j.matpur.2013.01.001.
  • 加载中

Article Metrics

HTML views(1960) PDF downloads(209) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint