The aim of this paper is to compare different kinetic approaches to a polyatomic rarefied gas: the kinetic approach via a continuous energy parameter I and the mixture-like one, based on discrete internal energy. We prove that if we consider only 6 moments for a non-polytropic gas the two approaches give the same symmetric hyperbolic differential system previously obtained by the phenomenological Extended Thermodynamics. Both meaning and role of dynamical pressure become more clear in the present analysis.
Citation: |
T. Arima
, A. Mentrelli
and T. Ruggeri
, Extended thermodynamics of rarefied polyatomic gases and characteristic velocities, Rend. Lincei Mat. Appl., 25 (2014)
, 275-291.
doi: 10.4171/RLM/678.![]() ![]() ![]() |
|
T. Arima
, A. Mentrelli
and T. Ruggeri
, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 234 (2014)
, 111-140.
doi: 10.1016/j.aop.2014.03.011.![]() ![]() ![]() |
|
T. Arima, T. Ruggeri and M. Sugiyama, Duality principle from rarefied to dense gas and extended thermodynamics with 6 fields,
Phys. Rev. Fluids 2 (2017), 013401, 22 pp.
![]() |
|
T. Arima
, T. Ruggeri
, M. Sugiyama
and S. Taniguchi
, Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments, Ann. Physics, 372 (2016)
, 83-109.
doi: 10.1016/j.aop.2016.04.015.![]() ![]() ![]() |
|
T. Arima
, T. Ruggeri
, M. Sugiyama
and S. Taniguchi
, Nonlinear extended thermodynamics of real gases with 6 fields, Int. J. Non–Linear Mech., 72 (2015)
, 6-15.
![]() |
|
T. Arima
, T. Ruggeri
, S. Taniguchi
and M. Sugiyama
, Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics, Phys. Lett. A, 377 (2013)
, 2136-2140.
doi: 10.1016/j.physleta.2013.06.035.![]() ![]() ![]() |
|
T. Arima
, S. Taniguchi
, T. Ruggeri
and M. Sugiyama
, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics, Contin. Mech. Thermodyn., 25 (2013)
, 727-737.
doi: 10.1007/s00161-012-0271-8.![]() ![]() ![]() |
|
T. Arima
, S. Taniguchi
, T. Ruggeri
and M. Sugiyama
, Extended thermodynamics of dense gases, Contin. Mech. Thermodyn., 24 (2012)
, 271-292.
doi: 10.1007/s00161-011-0213-x.![]() ![]() |
|
T. Arima
, S. Taniguchi
, T. Ruggeri
and M. Sugiyama
, Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner's theory, Phys. Lett. A, 376 (2012)
, 2799-2803.
doi: 10.1016/j.physleta.2012.08.030.![]() ![]() ![]() |
|
T. Arima
, T. Ruggeri
, M. Sugiyama
and S. Taniguchi
, Recent results on nonlinear extended thermodynamics of real gases with six fields. Part Ⅰ: general theory, Ric. Mat., 65 (2016)
, 263-277.
doi: 10.1007/s11587-016-0283-y.![]() ![]() ![]() |
|
M. Bisi
, L. Desvillettes
and G. Spiga
, Exponential convergence to equilibrium via Lyapunov functionals for reaction-diffusion equations arising from non reversible chemical kinetics, M2AN Math. Model. Numer. Anal., 43 (2009)
, 151-172.
doi: 10.1051/m2an:2008045.![]() ![]() ![]() |
|
M. Bisi
, G. Martaló
and G. Spiga
, Multi–temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem, Comput. Math. Appl., 66 (2013)
, 1403-1417.
doi: 10.1016/j.camwa.2013.08.015.![]() ![]() ![]() |
|
M. Bisi
, A. Rossani
and G. Spiga
, A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures, Phys. A, 438 (2015)
, 603-611.
doi: 10.1016/j.physa.2015.06.021.![]() ![]() ![]() |
|
C. Borgnakke
and P. S. Larsen
, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18 (1975)
, 405-420.
doi: 10.1016/0021-9991(75)90094-7.![]() ![]() |
|
J. F. Bourgat
, L. Desvillettes
, P. Le Tallec
and B. Perthame
, Microreversible collisions for polyatomic gases, Eur. J. Mech. B/Fluids, 13 (1994)
, 237-254.
![]() |
|
C. Cercignani,
Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, University Press, Cambridge, 2000.
![]() |
|
S. Chapman and T. G. Cowling,
The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970.
![]() |
|
F. Conforto
, M. Groppi
, R. Monaco
and G. Spiga
, Kinetic approach to deflagration processes in a recombination reaction, Kinet. Relat. Models, 4 (2011)
, 259-276.
doi: 10.3934/krm.2011.4.259.![]() ![]() ![]() |
|
W. Dreyer
, Maximization of the entropy in non–equilibrium, J. Phys. A: Math. Gen., 20 (1987)
, 6505-6517.
doi: 10.1088/0305-4470/20/18/047.![]() ![]() ![]() |
|
M. Groppi
, K. Aoki
, G. Spiga
and V. Tritsch
, Shock structure analysis in chemically reacting gas mixtures by a relaxation–time kinetic model, Phys. Fluids, 20 (2008)
, 117103, 11pp.
doi: 10.1063/1.3013637.![]() ![]() |
|
M. Groppi
, P. Lichtenberger
, F. Schuerrer
and G. Spiga
, Conservative approximation schemes of kinetic equations for chemical reactions, Eur. J. Mech. B/Fluids, 27 (2008)
, 202-217.
doi: 10.1016/j.euromechflu.2007.05.001.![]() ![]() ![]() |
|
M. Groppi, S. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure J. Stat. Mech. -Theory Exp. (2009), P10010, 15 pp.
![]() |
|
M. Groppi
and G. Spiga
, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999)
, 197-219.
![]() |
|
M. Groppi, G. Spiga and F. Zus, Euler closure of the Boltzmann equations for resonant bimolecular reactions Phys. Fluids 18 (2006), 057105, 8 pp.
![]() |
|
S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation AIP Conference Proceedings of "30th International Symposium on Rarefied Gas Dynamics" (eds. A. Ketsdever and H. Struchtrup) 1786 (2016), 180004, 8 pp.
![]() |
|
J. R. Mika and J. Banasiak,
Singularly Perturbed Evolution Equations with Applications to Kinetic Theory World Scientific, Singapore, 1995.
![]() |
|
I. Müller and T. Ruggeri,
Extended Thermodynamics Springer Tracts in Natural Philosophy, 37 ($1^{\rm st}$ edition), Springer-Verlag, New York, 1993.
![]() |
|
I. Müller and T. Ruggeri,
Rational Extended Thermodynamics, $2^{\rm nd}$ edition, Springer, New York, 1998.
![]() |
|
M. Pavić
, T. Ruggeri
and S. Simić
, Maximum entropy principle for polyatomic gases, Phys. A, 392 (2013)
, 1302-1317.
doi: 10.1016/j.physa.2012.12.006.![]() ![]() ![]() |
|
A. Rossani
and G. Spiga
, A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999)
, 563-573.
doi: 10.1016/S0378-4371(99)00336-2.![]() ![]() ![]() |
|
T. Ruggeri
, Galilean invariance and entropy principle for systems of balance laws, Contin. Mech. Thermodyn., 1 (1989)
, 3-20.
doi: 10.1007/BF01125883.![]() ![]() ![]() |
|
T. Ruggeri
, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11 (2016)
, 1-22.
![]() ![]() |
|
T. Ruggeri and M. Sugiyama,
Rational Extended Thermodynamics beyond the Monatomic Gas Springer, Cham Heidelberg New York Dordrecht London, 2015.
![]() |
|
Y. Shizuta
and S. Kawashima
, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985)
, 249-275.
doi: 10.14492/hokmj/1381757663.![]() ![]() ![]() |
|
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas Phys. Fluids 26 (2014), 016103, 15 pp.
![]() |
|
S. Taniguchi
, T. Arima
, T. Ruggeri
and M. Sugiyama
, Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Linear Mech., 79 (2016)
, 66-75.
![]() |
|
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory Phys. Rev. E 89 (2014), 013025, 11 pp.
![]() |