In this paper, we prove the local well-posedness of strong solutions for a compressible Navier-Stokes-Maxwell system, provided the initial data satisfy a natural compatibility condition. We do not assume the positivity of initial density, it may vanish in an open subset (vacuum) of Ω.
Citation: |
T. Alazard
, Low mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006)
, 1-73.
doi: 10.1007/s00205-005-0393-2.![]() ![]() ![]() |
|
J. Bourguignon
and H. Brezis
, Remarks on the Euler equation, J. Funct. Anal., 15 (1974)
, 341-363.
doi: 10.1016/0022-1236(74)90027-5.![]() ![]() ![]() |
|
Y. Cho
and H. Kim
, Existence results for viscous polytropic fluid with vacuum, J. Differential Equations, 228 (2006)
, 377-411.
doi: 10.1016/j.jde.2006.05.001.![]() ![]() ![]() |
|
C. Dou
, S. Jiang
and Y. Ou
, Low mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Diff. Eqs., 258 (2015)
, 379-398.
doi: 10.1016/j.jde.2014.09.017.![]() ![]() ![]() |
|
R. J. Duan
, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012)
, 133-197.
doi: 10.1142/S0219530512500078.![]() ![]() ![]() |
|
J. Fan
and W. Yu
, Strong solutions to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Analysis-Real World Applications, 10 (2009)
, 392-409.
doi: 10.1016/j.nonrwa.2007.10.001.![]() ![]() ![]() |
|
J. Fan
, F. Li
and G. Nakamura
, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydarodynamic equations in a bounded domain, Kinet. Relat. Models, 9 (2016)
, 443-453.
doi: 10.3934/krm.2016002.![]() ![]() ![]() |
|
J. Fan
, F. Li
and G. Nakamura
, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydarodynamic equations in a bounded domain Ⅱ: global existence case, J. Math. Fluid Mech., 9 (2016)
, 443-453.
doi: 10.3934/krm.2016002.![]() ![]() ![]() |
|
Y. H. Feng
, S. Wang
and X. Li
, Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas, Acta Mathematica Scientia, 35 (2015)
, 955-969.
doi: 10.1016/S0252-9602(15)30030-8.![]() ![]() ![]() |
|
G. Y. Hong
, X. F. Hou
, H. Y. Peng
and C. J. Zhu
, Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum, Sci. China Math., 57 (2014)
, 2463-2484.
doi: 10.1007/s11425-014-4896-x.![]() ![]() ![]() |
|
X. Hou
and L. Zhu
, Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum, Commun. Pure Appl. Anal., 15 (2016)
, 161-183.
doi: 10.3934/cpaa.2016.15.161.![]() ![]() ![]() |
|
X. F. Hou
, L. Yao
and C. J. Zhu
, Existence and uniqueness of global strong solutions to the Navier-Stokes-Maxwell system with large initial data and vacuum, Scientia Sinica Mathematica, 46 (2016)
, 945-966.
![]() |
|
I. Imai,
General Principles of Magneto-Fluid Dynamics in "Magneto-Fluid Dynamics, " Suppl. Prog. Theor. Phys. 24(ed. H. Yukawa) Chap. Ⅰ, RIFP Kyoto Univ. , 1962.
![]() |
|
S. Jiang
and F. C. Li
, Converagese of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptotic Analysis, 95 (2015)
, 161-185.
doi: 10.3233/ASY-151321.![]() ![]() ![]() |
|
S. Jiang
and F. C. Li
, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015)
, 61-76.
doi: 10.1007/s11425-014-4923-y.![]() ![]() ![]() |
|
E. Kang and J. Lee, Notes on the global well-posedness for the Maxwell-Navier-Stokes system,
Abstract and Applied Analysis 2013 (2013), Art. ID 402793, 6 pp.
![]() |
|
S. Kawashima
and Y. Shizuta
, Magnetohydrodynamic approximation of the complete equations for an eletromagnetic fluid, Tsukuba J. Math., 10 (1986)
, 131-149.
doi: 10.21099/tkbjm/1496160397.![]() ![]() ![]() |
|
S. Kawashima
and Y. Shizuta
, Magnetohydrodynamic approximation of the complete equations for an eletromagnetic fluid Ⅱ, Proc. Japan Acad., 62 (1986)
, 181-184.
doi: 10.3792/pjaa.62.181.![]() ![]() ![]() |
|
N. A. Krall and A. W. Trivelpiece,
Principles of Plasma Physics San Francisco Press, 1986.
![]() |
|
F. C. Li
and Y. Mu
, Low mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014)
, 334-344.
doi: 10.1016/j.jmaa.2013.10.064.![]() ![]() ![]() |
|
E. H. Lieb and M. Loss,
Analysis 2$^{nd}$ edition, AMS, 2001.
![]() |
|
P. L. Lions,
Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models Oxford University Press, New York, 1998.
![]() |
|
Q. Q. Liu
and Y. F. Su
, Large time behavior for the non-isentropic Navier-Stokes-Maxwell system, Mathematical Methods in the Applied Sciences, 40 (2017)
, 663-679.
doi: 10.1002/mma.3999.![]() ![]() ![]() |
|
G. Metivier
and S. Schochet
, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001)
, 61-90.
doi: 10.1007/PL00004241.![]() ![]() ![]() |
|
S. -I. Pai,
Magnetogasdynamics and Plasma Dynamics Springer-Verlag, Vienna, 1962.
![]() |
|
W. K. Wang
and X. Xu
, Large time behavior of solution for the full compressible navier-stokes-maxwell system, Commun. Pure Appl. Anal., 14 (2015)
, 2283-2313.
doi: 10.3934/cpaa.2015.14.2283.![]() ![]() ![]() |
|
Y. Xiao
and Z. Xin
, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007)
, 1027-1055.
doi: 10.1002/cpa.20187.![]() ![]() ![]() |
|
W. M. Zajaczkowski
, On nonstationary motioni of a compressible barotropic viscous fluid with boundary slip condition, J. Appl. Anal., 4 (1998)
, 167-204.
doi: 10.1515/JAA.1998.167.![]() ![]() ![]() |