In this paper, we prove the local well-posedness of strong solutions for a compressible Navier-Stokes-Maxwell system, provided the initial data satisfy a natural compatibility condition. We do not assume the positivity of initial density, it may vanish in an open subset (vacuum) of Ω.
Citation: |
T. Alazard , Low mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006) , 1-73. doi: 10.1007/s00205-005-0393-2. | |
J. Bourguignon and H. Brezis , Remarks on the Euler equation, J. Funct. Anal., 15 (1974) , 341-363. doi: 10.1016/0022-1236(74)90027-5. | |
Y. Cho and H. Kim , Existence results for viscous polytropic fluid with vacuum, J. Differential Equations, 228 (2006) , 377-411. doi: 10.1016/j.jde.2006.05.001. | |
C. Dou , S. Jiang and Y. Ou , Low mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Diff. Eqs., 258 (2015) , 379-398. doi: 10.1016/j.jde.2014.09.017. | |
R. J. Duan , Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012) , 133-197. doi: 10.1142/S0219530512500078. | |
J. Fan and W. Yu , Strong solutions to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Analysis-Real World Applications, 10 (2009) , 392-409. doi: 10.1016/j.nonrwa.2007.10.001. | |
J. Fan , F. Li and G. Nakamura , Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydarodynamic equations in a bounded domain, Kinet. Relat. Models, 9 (2016) , 443-453. doi: 10.3934/krm.2016002. | |
J. Fan , F. Li and G. Nakamura , Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydarodynamic equations in a bounded domain Ⅱ: global existence case, J. Math. Fluid Mech., 9 (2016) , 443-453. doi: 10.3934/krm.2016002. | |
Y. H. Feng , S. Wang and X. Li , Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas, Acta Mathematica Scientia, 35 (2015) , 955-969. doi: 10.1016/S0252-9602(15)30030-8. | |
G. Y. Hong , X. F. Hou , H. Y. Peng and C. J. Zhu , Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum, Sci. China Math., 57 (2014) , 2463-2484. doi: 10.1007/s11425-014-4896-x. | |
X. Hou and L. Zhu , Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum, Commun. Pure Appl. Anal., 15 (2016) , 161-183. doi: 10.3934/cpaa.2016.15.161. | |
X. F. Hou , L. Yao and C. J. Zhu , Existence and uniqueness of global strong solutions to the Navier-Stokes-Maxwell system with large initial data and vacuum, Scientia Sinica Mathematica, 46 (2016) , 945-966. | |
I. Imai, General Principles of Magneto-Fluid Dynamics in "Magneto-Fluid Dynamics, " Suppl. Prog. Theor. Phys. 24(ed. H. Yukawa) Chap. Ⅰ, RIFP Kyoto Univ. , 1962. | |
S. Jiang and F. C. Li , Converagese of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptotic Analysis, 95 (2015) , 161-185. doi: 10.3233/ASY-151321. | |
S. Jiang and F. C. Li , Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015) , 61-76. doi: 10.1007/s11425-014-4923-y. | |
E. Kang and J. Lee, Notes on the global well-posedness for the Maxwell-Navier-Stokes system, Abstract and Applied Analysis 2013 (2013), Art. ID 402793, 6 pp. | |
S. Kawashima and Y. Shizuta , Magnetohydrodynamic approximation of the complete equations for an eletromagnetic fluid, Tsukuba J. Math., 10 (1986) , 131-149. doi: 10.21099/tkbjm/1496160397. | |
S. Kawashima and Y. Shizuta , Magnetohydrodynamic approximation of the complete equations for an eletromagnetic fluid Ⅱ, Proc. Japan Acad., 62 (1986) , 181-184. doi: 10.3792/pjaa.62.181. | |
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics San Francisco Press, 1986. | |
F. C. Li and Y. Mu , Low mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014) , 334-344. doi: 10.1016/j.jmaa.2013.10.064. | |
E. H. Lieb and M. Loss, Analysis 2$^{nd}$ edition, AMS, 2001. | |
P. L. Lions, Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models Oxford University Press, New York, 1998. | |
Q. Q. Liu and Y. F. Su , Large time behavior for the non-isentropic Navier-Stokes-Maxwell system, Mathematical Methods in the Applied Sciences, 40 (2017) , 663-679. doi: 10.1002/mma.3999. | |
G. Metivier and S. Schochet , The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001) , 61-90. doi: 10.1007/PL00004241. | |
S. -I. Pai, Magnetogasdynamics and Plasma Dynamics Springer-Verlag, Vienna, 1962. | |
W. K. Wang and X. Xu , Large time behavior of solution for the full compressible navier-stokes-maxwell system, Commun. Pure Appl. Anal., 14 (2015) , 2283-2313. doi: 10.3934/cpaa.2015.14.2283. | |
Y. Xiao and Z. Xin , On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007) , 1027-1055. doi: 10.1002/cpa.20187. | |
W. M. Zajaczkowski , On nonstationary motioni of a compressible barotropic viscous fluid with boundary slip condition, J. Appl. Anal., 4 (1998) , 167-204. doi: 10.1515/JAA.1998.167. |