In this paper, we study the global regularity to a three-dimensional logarithmic sub-dissipative Navier-Stokes model. This system takes the form of ${\partial _t}u +(\mathcal {D}^{-1/2}u)·\nabla u + \nabla p =-\mathcal {A}^2u$, where $\mathcal {D}$ and $\mathcal {A}$ are Fourier multipliers defined by $\mathcal {D}=|\nabla|$ and $\mathcal {A}= |\nabla|\ln^{-1/4}(e + \lambda \ln (e + |\nabla| )) $ with $\lambda≥0$. The symbols of the $\mathcal {D}$ and $\mathcal {A}$ are $m\left( \xi \right) = ≤\left| \xi \right|$ and $h\left( \xi \right) = \left| \xi \right|/g\left( \xi \right)$ respectively, where $g\left( \xi \right) = {\ln ^{1/4}}\left( {e + \lambda \ln \left( {e + \left| \xi \right|} \right)} \right),\lambda \ge 0$. It is clear that for the Navier-Stokes equations, global regularity is true under the assumption that $h\left( \xi \right) =|\xi|^\alpha$ for $\alpha≥ 5/4$. Here by changing the advection term we greatly weaken the dissipation to $h\left( \xi \right) = \left| \xi \right|/g\left( \xi \right)$. We prove the global well-posedness for any smooth initial data in $H^s(\mathbb{R}^3)$, $ s≥3 $ by using the energy method.
Citation: |
H. Bahouri, J. Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), vol. 343, Springer, Heidelberg, 2011, xvi+523pp.
![]() |
|
J.-Y. Chemin
and I. Gallagher
, Wellposedness and stability results for the Navier-Stokes equations in $\mathbb{R}^3$, Ann. Inst. H. Poincaré Anal., Non Linéaire, 26 (2009)
, 599-624.
doi: 10.1016/j.anihpc.2007.05.008.![]() ![]() ![]() |
|
C. R. Doering
and J. D. Gibbon
, Bounds on moments of the energy spectrum for weak solutions of the three-dimensional Navier-Stokes equations, Phys. D, 165 (2002)
, 163-175.
doi: 10.1016/S0167-2789(02)00427-X.![]() ![]() ![]() |
|
D. Fang
and B. Han
, Global solution for the generalized anisotropic Navier-Stokes equations with large data, Mathematical Modeling and Analysis, 20 (2015)
, 205-231.
doi: 10.3846/13926292.2015.1020894.![]() ![]() ![]() |
|
C. L. Fefferman
, Existence and smoothness of the Navier-Stokes equation, in: J. Carlson, et al. (Eds.), The Millennium Prize Problems, Clay Math. Inst., (2006)
, 57-67.
![]() ![]() |
|
I. Gallagher
and M. Paicu
, Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations, Proc. Amer. Math. Soc., 137 (2009)
, 2075-2083.
doi: 10.1090/S0002-9939-09-09765-2.![]() ![]() ![]() |
|
T. Y. Hou
and Z. Lei
, On the stabilizing effect of convection in three-dimensional incompressible flows, Comm. Pure Appl. Math., 62 (2009)
, 501-564.
doi: 10.1002/cpa.20254.![]() ![]() ![]() |
|
T. Y. Hou
, Z. Lei
and C. M. Li
, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008)
, 1622-1637.
doi: 10.1080/03605300802108057.![]() ![]() ![]() |
|
T. Y. Hou
, Z. Lei
, G. Luo
, S. Wang
and C. Zou
, On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations, Arch. Ration. Mech. Anal., 212 (2014)
, 683-706.
doi: 10.1007/s00205-013-0717-6.![]() ![]() ![]() |
|
T. Y. Hou
and R. Li
, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Sci., 16 (2006)
, 639-664.
doi: 10.1007/s00332-006-0800-3.![]() ![]() ![]() |
|
N. Katz
and N. Pavlović
, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002)
, 355-379.
doi: 10.1007/s00039-002-8250-z.![]() ![]() ![]() |
|
N. H. Katz
and N. Pavlovic
, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005)
, 695-708.
doi: 10.1090/S0002-9947-04-03532-9.![]() ![]() ![]() |
|
H. Koch
and D. Tataru
, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001)
, 22-35.
doi: 10.1006/aima.2000.1937.![]() ![]() ![]() |
|
Z. Lei
and F. H. Lin
, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011)
, 1297-1304.
doi: 10.1002/cpa.20361.![]() ![]() ![]() |
|
Z. Lei
, F. H. Lin
and Y. Zhou
, Structure of helicity and global solutions of incompressible Navier-Stokes equation, Arch. Ration. Mech. Anal., 218 (2015)
, 1417-1430.
doi: 10.1007/s00205-015-0884-8.![]() ![]() ![]() |
|
Z. Lei
, E. A. Navas
and Q. S. Zhang
, A priori bound on the velocity in axially symmetric Navier-Stokes equations, Comm. Math. Phys., 341 (2016)
, 289-307.
doi: 10.1007/s00220-015-2496-4.![]() ![]() ![]() |
|
D. Li
and Ya. Sinai
, Blow ups of complex solutions of the 3d-Navier-Stokes system and renormalization group method, J. Eur. Math. Soc., 10 (2008)
, 267-313.
doi: 10.4171/JEMS/111.![]() ![]() ![]() |
|
S. Montgomery-Smith
, Finite time blow up for a Navier-Stokes like equation, Proc. Amer. Math. Soc., 129 (2001)
, 3025-3029.
doi: 10.1090/S0002-9939-01-06062-2.![]() ![]() ![]() |
|
P. Plechac
and V. Severak
, singular and regular solutions of a nonlinear parabolic system, Nonlinearity, 16 (2003)
, 2083-2097.
doi: 10.1088/0951-7715/16/6/313.![]() ![]() ![]() |
|
P. Plechac
and V. Severak
, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 54 (2001)
, 1215-1242.
doi: 10.1002/cpa.3006.![]() ![]() ![]() |
|
T. Tao
, Localisation and compactness properties of the Navier-Stokes global regularity problem, Anal. PDE, 6 (2013)
, 25-107.
doi: 10.2140/apde.2013.6.25.![]() ![]() ![]() |
|
T. Tao,
Structure and Randomness: Pages from Year One of a Mathematical Blog American Mathematical Society, 2008.
![]() |
|
T. Tao
, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009)
, 361-366.
doi: 10.2140/apde.2009.2.361.![]() ![]() ![]() |
|
T. Tao,
Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106 Conference Board of the Mathematical Sciences, Washington, DC, 2006.
![]() |
|
T. Tao
, A quantitative formulation of the global regularity problem for the periodic Navier-Stokes equation, Dyn. Partial Differ Equ., 4 (2007)
, 293-302.
doi: 10.4310/DPDE.2007.v4.n4.a1.![]() ![]() ![]() |
|
K. Y. Wang
, Global regularity for a model of three-dimensional Navier-Stokes equation, J. Differential Equations, 258 (2015)
, 2969-2982.
doi: 10.1016/j.jde.2014.12.034.![]() ![]() ![]() |
|
Y. Zhou
and Z. Lei
, Logarithmically improved criteria for Euler and Navier-Stokes equations, Commun. Pure Appl. Anal., 12 (2013)
, 2715-2719.
doi: 10.3934/cpaa.2013.12.2715.![]() ![]() ![]() |