Advanced Search
Article Contents
Article Contents

Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation

  • * Corresponding author: Shuguang Shao

    * Corresponding author: Shuguang Shao 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the global regularity to a three-dimensional logarithmic sub-dissipative Navier-Stokes model. This system takes the form of ${\partial _t}u +(\mathcal {D}^{-1/2}u)·\nabla u + \nabla p =-\mathcal {A}^2u$, where $\mathcal {D}$ and $\mathcal {A}$ are Fourier multipliers defined by $\mathcal {D}=|\nabla|$ and $\mathcal {A}= |\nabla|\ln^{-1/4}(e + \lambda \ln (e + |\nabla| )) $ with $\lambda≥0$. The symbols of the $\mathcal {D}$ and $\mathcal {A}$ are $m\left( \xi \right) = ≤\left| \xi \right|$ and $h\left( \xi \right) = \left| \xi \right|/g\left( \xi \right)$ respectively, where $g\left( \xi \right) = {\ln ^{1/4}}\left( {e + \lambda \ln \left( {e + \left| \xi \right|} \right)} \right),\lambda \ge 0$. It is clear that for the Navier-Stokes equations, global regularity is true under the assumption that $h\left( \xi \right) =|\xi|^\alpha$ for $\alpha≥ 5/4$. Here by changing the advection term we greatly weaken the dissipation to $h\left( \xi \right) = \left| \xi \right|/g\left( \xi \right)$. We prove the global well-posedness for any smooth initial data in $H^s(\mathbb{R}^3)$, $ s≥3 $ by using the energy method.

    Mathematics Subject Classification: Primary:35A01, 35B65;Secondary:53C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), vol. 343, Springer, Heidelberg, 2011, xvi+523pp.
      J.-Y. Chemin  and  I. Gallagher , Wellposedness and stability results for the Navier-Stokes equations in $\mathbb{R}^3$, Ann. Inst. H. Poincaré Anal., Non Linéaire, 26 (2009) , 599-624.  doi: 10.1016/j.anihpc.2007.05.008.
      C. R. Doering  and  J. D. Gibbon , Bounds on moments of the energy spectrum for weak solutions of the three-dimensional Navier-Stokes equations, Phys. D, 165 (2002) , 163-175.  doi: 10.1016/S0167-2789(02)00427-X.
      D. Fang  and  B. Han , Global solution for the generalized anisotropic Navier-Stokes equations with large data, Mathematical Modeling and Analysis, 20 (2015) , 205-231.  doi: 10.3846/13926292.2015.1020894.
      C. L. Fefferman , Existence and smoothness of the Navier-Stokes equation, in: J. Carlson, et al. (Eds.), The Millennium Prize Problems, Clay Math. Inst., (2006) , 57-67. 
      I. Gallagher  and  M. Paicu , Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations, Proc. Amer. Math. Soc., 137 (2009) , 2075-2083.  doi: 10.1090/S0002-9939-09-09765-2.
      T. Y. Hou  and  Z. Lei , On the stabilizing effect of convection in three-dimensional incompressible flows, Comm. Pure Appl. Math., 62 (2009) , 501-564.  doi: 10.1002/cpa.20254.
      T. Y. Hou , Z. Lei  and  C. M. Li , Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008) , 1622-1637.  doi: 10.1080/03605300802108057.
      T. Y. Hou , Z. Lei , G. Luo , S. Wang  and  C. Zou , On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations, Arch. Ration. Mech. Anal., 212 (2014) , 683-706.  doi: 10.1007/s00205-013-0717-6.
      T. Y. Hou  and  R. Li , Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations, J. Nonlinear Sci., 16 (2006) , 639-664.  doi: 10.1007/s00332-006-0800-3.
      N. Katz  and  N. Pavlović , A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002) , 355-379.  doi: 10.1007/s00039-002-8250-z.
      N. H. Katz  and  N. Pavlovic , Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005) , 695-708.  doi: 10.1090/S0002-9947-04-03532-9.
      H. Koch  and  D. Tataru , Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001) , 22-35.  doi: 10.1006/aima.2000.1937.
      Z. Lei  and  F. H. Lin , Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011) , 1297-1304.  doi: 10.1002/cpa.20361.
      Z. Lei , F. H. Lin  and  Y. Zhou , Structure of helicity and global solutions of incompressible Navier-Stokes equation, Arch. Ration. Mech. Anal., 218 (2015) , 1417-1430.  doi: 10.1007/s00205-015-0884-8.
      Z. Lei , E. A. Navas  and  Q. S. Zhang , A priori bound on the velocity in axially symmetric Navier-Stokes equations, Comm. Math. Phys., 341 (2016) , 289-307.  doi: 10.1007/s00220-015-2496-4.
      D. Li  and  Ya. Sinai , Blow ups of complex solutions of the 3d-Navier-Stokes system and renormalization group method, J. Eur. Math. Soc., 10 (2008) , 267-313.  doi: 10.4171/JEMS/111.
      S. Montgomery-Smith , Finite time blow up for a Navier-Stokes like equation, Proc. Amer. Math. Soc., 129 (2001) , 3025-3029.  doi: 10.1090/S0002-9939-01-06062-2.
      P. Plechac  and  V. Severak , singular and regular solutions of a nonlinear parabolic system, Nonlinearity, 16 (2003) , 2083-2097.  doi: 10.1088/0951-7715/16/6/313.
      P. Plechac  and  V. Severak , On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 54 (2001) , 1215-1242.  doi: 10.1002/cpa.3006.
      T. Tao , Localisation and compactness properties of the Navier-Stokes global regularity problem, Anal. PDE, 6 (2013) , 25-107.  doi: 10.2140/apde.2013.6.25.
      T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog American Mathematical Society, 2008.
      T. Tao , Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009) , 361-366.  doi: 10.2140/apde.2009.2.361.
      T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106 Conference Board of the Mathematical Sciences, Washington, DC, 2006.
      T. Tao , A quantitative formulation of the global regularity problem for the periodic Navier-Stokes equation, Dyn. Partial Differ Equ., 4 (2007) , 293-302.  doi: 10.4310/DPDE.2007.v4.n4.a1.
      K. Y. Wang , Global regularity for a model of three-dimensional Navier-Stokes equation, J. Differential Equations, 258 (2015) , 2969-2982.  doi: 10.1016/j.jde.2014.12.034.
      Y. Zhou  and  Z. Lei , Logarithmically improved criteria for Euler and Navier-Stokes equations, Commun. Pure Appl. Anal., 12 (2013) , 2715-2719.  doi: 10.3934/cpaa.2013.12.2715.
  • 加载中

Article Metrics

HTML views(379) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint