The compressible non-isentropic Navier-Stokes-Maxwell system is investigated in $\mathbb{R}^3$ and the global existence and large time behavior of solutions are established by pure energy method provided the initial perturbation around a constant state is small enough. We first construct the global unique solution under the assumption that the $H^3$ norm of the initial data is small, but the higher order derivatives can be arbitrarily large. If further the initial data belongs to $\dot{H}^{-s}$ ($0≤ s<3/2$) or $\dot{B}_{2,∞}^{-s}$ ($0< s≤3/2$), by a regularity interpolation trick, we obtain the various decay rates of the solution and its higher order derivatives. As an immediate byproduct, the $L^p$-$L^2$ $(1≤ p≤ 2)$ type of the decay rates follows without requiring that the $L^p$ norm of initial data is small.
Citation: |
F. Chen,
Introduction to plasma physics and controlled fusion Plasma Physics, Vol. 1,1974.
![]() |
|
R. Duan
, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl. (Singap.), 10 (2012)
, 133-197.
doi: 10.1142/S0219530512500078.![]() ![]() ![]() |
|
R. Duan
, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011)
, 375-413.
doi: 10.1142/S0219891611002421.![]() ![]() ![]() |
|
J. Fan
and F. Li
, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system, Acta Appl Math, 133 (2014)
, 19-32.
doi: 10.1007/s10440-013-9857-9.![]() ![]() ![]() |
|
Y. Feng
, Y. Peng
and S. Wang
, Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 19 (2014)
, 105-116.
doi: 10.1016/j.nonrwa.2014.03.004.![]() ![]() ![]() |
|
P. Germain
, S. Ibrahim
and N. Masmoudi
, Well-posedness of the Navier-Stokes-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014)
, 71-86.
doi: 10.1017/S0308210512001242.![]() ![]() ![]() |
|
L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc. , Prentice Hall, 2004.
![]() |
|
Y. Guo
, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012)
, 759-812.
doi: 10.1090/S0894-0347-2011-00722-4.![]() ![]() ![]() |
|
Y. Guo
and Y. Wang
, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012)
, 2165-2208.
doi: 10.1080/03605302.2012.696296.![]() ![]() ![]() |
|
G. Hong
, X. Hou
, H. Peng
and C. Zhu
, Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum, Sci. China Math., 57 (2014)
, 2463-2484.
doi: 10.1007/s11425-014-4896-x.![]() ![]() ![]() |
|
S. Ibrahim
and S. Keraani
, Global small solutions of the Navier-Stokes-Maxwell system, SIAM J. Math. Anal., 43 (2011)
, 2275-2295.
doi: 10.1137/100819813.![]() ![]() ![]() |
|
S. Ibrahim
and T. Yoneda
, Local solvability and loss of smoothness of the Navier-Stokes-Maxwell equations with large initial data, J. Math. Anal. Appl., 396 (2012)
, 555-561.
doi: 10.1016/j.jmaa.2012.06.038.![]() ![]() ![]() |
|
J. Jerome
, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions, Differential Integral Equations, 16 (2003)
, 1345-1368.
![]() ![]() |
|
T. Kato
, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975)
, 181-205.
doi: 10.1007/BF00280740.![]() ![]() ![]() |
|
F. Li
and Y. Mu
, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014)
, 334-344.
doi: 10.1016/j.jmaa.2013.10.064.![]() ![]() ![]() |
|
A. Majda and A. Bertozzi,
Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.
![]() |
|
N. Masmoudi
, Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., 93 (2010)
, 559-571.
doi: 10.1016/j.matpur.2009.08.007.![]() ![]() ![]() |
|
T. Nishida,
Nonlinear Hyperbolic Equations and Related Topics in Fluids Dynamics, Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978.
![]() |
|
V. Sohinger
and R. Strain
, The Boltzmann equation, Besov spaces, and optimal time decay rates in $\mathbb{R}_{x}^{n}$, Advances in Mathematics, 261 (2014)
, 274-332.
doi: 10.1016/j.aim.2014.04.012.![]() ![]() ![]() |
|
R. Strain
and Y. Guo
, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006)
, 417-429.
doi: 10.1080/03605300500361545.![]() ![]() ![]() |
|
Z. Tan
and Y. Wang
, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Anal., 71 (2009)
, 5866-5884.
doi: 10.1016/j.na.2009.05.012.![]() ![]() ![]() |
|
Z. Tan
and Y. Wang
, Global solution and large-time behavior of the 3D compressible Euler equations with damping, J. Differential Equations, 254 (2013)
, 1686-1704.
doi: 10.1016/j.jde.2012.10.026.![]() ![]() ![]() |
|
Z. Tan
, Y. Wang
and Y. Wang
, Decay estimates of solutions to the compressible Euler-Maxwell system in $\mathbb{R}^3$, J. Differential Equations, 257 (2014)
, 2846-2873.
doi: 10.1016/j.jde.2014.05.056.![]() ![]() ![]() |
|
Y. Wang
, Global solution and time decay of the Vlasov-Poisson-Landau system in $\mathbb{R}^3$, SIAM J. Math. Anal., 44 (2012)
, 3281-3323.
doi: 10.1137/120879129.![]() ![]() ![]() |
|
J. Yang
and S. Wang
, Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations, Sci. China Math., 57 (2014)
, 2153-2162.
doi: 10.1007/s11425-014-4792-4.![]() ![]() ![]() |