February  2018, 11(1): 215-217. doi: 10.3934/krm.2018011

Letter to the editors in chief

1. 

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

2. 

Department of Mathematics, Stanford University, Stanford, USA

3. 

Department of Mathematics, National University of Singapore Singapore, Singapore

Received  August 2017 Published  September 2017

Citation: Tai-Ping Liu, Shih-Hsien Yu. Letter to the editors in chief. Kinetic & Related Models, 2018, 11 (1) : 215-217. doi: 10.3934/krm.2018011
References:
[1]

K. Zumbrun, $L^∞$ resolvent bounds for steady Boltzmann equation, Kinet. Relat. Models, 10 (2017), 1065-1089.  doi: 10.3934/krm.2017048.  Google Scholar

[2]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation, Arch. Rational Mech. Anal., 209 (2013), 869-997.  doi: 10.1002/cpa.20011.  Google Scholar

[3]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Comm. Pure Appl. Math., 57 (2004), 1543-1608.  doi: 10.1007/s00205-013-0640-x.  Google Scholar

show all references

References:
[1]

K. Zumbrun, $L^∞$ resolvent bounds for steady Boltzmann equation, Kinet. Relat. Models, 10 (2017), 1065-1089.  doi: 10.3934/krm.2017048.  Google Scholar

[2]

T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for one-dimensional Boltzmann equation, Arch. Rational Mech. Anal., 209 (2013), 869-997.  doi: 10.1002/cpa.20011.  Google Scholar

[3]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Comm. Pure Appl. Math., 57 (2004), 1543-1608.  doi: 10.1007/s00205-013-0640-x.  Google Scholar

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (206)
  • HTML views (452)
  • Cited by (0)

Other articles
by authors

[Back to Top]