We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is weakly perturbed by a stochastic term conserving energy and momentum and whose evolution is governed by an Ornstein-Uhlenbeck process. We prove the kinetic limit for the Wigner functions corresponding to the chain. This result generalizes the results of [
Citation: |
N. Ben Abdallah , A. Mellet and M. Puel , Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011) , 2249-2262. doi: 10.1142/S0218202511005738. | |
R. J. Adler, Geometry of Random Fields, Wiley, 1981. | |
R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Lecture Notes-Monograph Series, Vol. 12, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, 1990. | |
G. Bal , G. Papanicolaou and L. Ryzhik , Radiative transport limit for the random Schrödinger equation, Nonlinearity, 15 (2002) , 513-529. doi: 10.1088/0951-7715/15/2/315. | |
G. Basile , From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014) , 1301-1322. doi: 10.1214/13-AIHP554. | |
G. Basile , C. Bernardin and S. Olla , A momentum conserving model with anomalous thermal conductivity in low dimension, Physical Review Letters, 96 (2006) , 204303. | |
G. Basile , S. Olla and H. Spohn , Wigner functions and stochastically perturbed lattice dynamics, Arch.Rat.Mech., 195 (2009) , 171-203. doi: 10.1007/s00205-008-0205-6. | |
A. Bensoussan , J. L. Lions and G. C. Papanicolaou , Boundary Layers and Homogenization of transport Processes, Publ. RIMS, Kyoto Univ., 15 (1979) , 53-157. doi: 10.2977/prims/1195188427. | |
C. Bernardin , P. Gonçalves and M. Jara , 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise, Arch. Ration. Mech. Anal., 220 (2016) , 505-542. doi: 10.1007/s00205-015-0936-0. | |
C. Gomez , Wave decoherence for the random Schrödinger equation with long-range correlations, Comm. Math. Phys., 320 (2013) , 37-71. doi: 10.1007/s00220-013-1711-4. | |
H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press Series in Signal Processing, Optimization, and Control, 6. MIT Press, Cambridge, MA, 1984. | |
S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997. | |
M. Jara and T. Komorowski , Limit theorems for some continuous-time random walks, Advances in Applied Probability, 43 (2011) , 782-813. doi: 10.1017/S0001867800005140. | |
M. Jara , T. Komorowski and S. Olla , Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob., 19 (2009) , 2270-2300. doi: 10.1214/09-AAP610. | |
M. Jara , T. Komorowski and S. Olla , Superdiffusion of energy in a chain of harmonic oscillators with noise, Commun. Math. Phys., 339 (2015) , 407-453. doi: 10.1007/s00220-015-2417-6. | |
T. Komorowski and S. Olla , Ballistic and superdiffusive scales in macroscopic evolution of a chain of oscillators, Nonlinearity, 29 (2016) , 962-999. doi: 10.1088/0951-7715/29/3/962. | |
T. Komorowski and L. Ryzhik , Passive tracer in a slowly decorrelating random flow with a large mean, Nonlinearity, 20 (2007) , 1215-1239. doi: 10.1088/0951-7715/20/5/009. | |
T. Komorowski and Ł. Stȩpień , Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension, Journ. Stat. Phys., 148 (2012) , 1-37. doi: 10.1007/s10955-012-0528-4. | |
T. Komorowski , S. Olla and L. Ryzhik , Asymptotics of the solutions of the stochastic lattice wave equation, Arch. Rational Mech. Anal., 209 (2013) , 455-494. doi: 10.1007/s00205-013-0626-8. | |
T. Kurtz , Semigroups of conditioned shifts and approximation of markov processes, Ann. Probab., 3 (1975) , 618-642. doi: 10.1214/aop/1176996305. | |
S. Lepri, R. Livi and A. Politi, Heat transport in low dimensions: Introduction and phenomenology, Thermal Transport in Low Dimensions, edt S. Lepri, LNP, 921 (2016), 1-37. | |
J. Lukkarinen and H. Spohn , Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal., 183 (2007) , 93-162. | |
A. Mellet , S. Mischler and C. Mouhot , Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011) , 493-525. doi: 10.1007/s00205-010-0354-2. | |
S. Peszat and Z. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, 2007. | |
M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, American Mathematical Society, 2009. | |
H. Spohn , Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., 154 (2014) , 1191-1227. doi: 10.1007/s10955-014-0933-y. | |
D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979. |