\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation

  • * Corresponding author: Tomasz Komorowski

    * Corresponding author: Tomasz Komorowski 
Both authors acknowledge the support of the Polish National Science Center grant UMO-2012/07/B/ST1/03320
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is weakly perturbed by a stochastic term conserving energy and momentum and whose evolution is governed by an Ornstein-Uhlenbeck process. We prove the kinetic limit for the Wigner functions corresponding to the chain. This result generalizes the results of [7] obtained for a random momentum exchange that is of a white noise type. In contrast with [7] the scattering term in the limiting Boltzmann equation obtained in the present situation depends also on the dispersion relation.

    Mathematics Subject Classification: Primary: 82C44; Secondary: 82C20, 82C70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   N. Ben Abdallah , A. Mellet  and  M. Puel , Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011) , 2249-2262.  doi: 10.1142/S0218202511005738.
      R. J. Adler, Geometry of Random Fields, Wiley, 1981.
      R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Lecture Notes-Monograph Series, Vol. 12, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, 1990.
      G. Bal , G. Papanicolaou  and  L. Ryzhik , Radiative transport limit for the random Schrödinger equation, Nonlinearity, 15 (2002) , 513-529.  doi: 10.1088/0951-7715/15/2/315.
      G. Basile , From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014) , 1301-1322.  doi: 10.1214/13-AIHP554.
      G. Basile , C. Bernardin  and  S. Olla , A momentum conserving model with anomalous thermal conductivity in low dimension, Physical Review Letters, 96 (2006) , 204303. 
      G. Basile , S. Olla  and  H. Spohn , Wigner functions and stochastically perturbed lattice dynamics, Arch.Rat.Mech., 195 (2009) , 171-203.  doi: 10.1007/s00205-008-0205-6.
      A. Bensoussan , J. L. Lions  and  G. C. Papanicolaou , Boundary Layers and Homogenization of transport Processes, Publ. RIMS, Kyoto Univ., 15 (1979) , 53-157.  doi: 10.2977/prims/1195188427.
      C. Bernardin , P. Gonçalves  and  M. Jara , 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise, Arch. Ration. Mech. Anal., 220 (2016) , 505-542.  doi: 10.1007/s00205-015-0936-0.
      C. Gomez , Wave decoherence for the random Schrödinger equation with long-range correlations, Comm. Math. Phys., 320 (2013) , 37-71.  doi: 10.1007/s00220-013-1711-4.
      H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press Series in Signal Processing, Optimization, and Control, 6. MIT Press, Cambridge, MA, 1984.
      S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997.
      M. Jara  and  T. Komorowski , Limit theorems for some continuous-time random walks, Advances in Applied Probability, 43 (2011) , 782-813.  doi: 10.1017/S0001867800005140.
      M. Jara , T. Komorowski  and  S. Olla , Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob., 19 (2009) , 2270-2300.  doi: 10.1214/09-AAP610.
      M. Jara , T. Komorowski  and  S. Olla , Superdiffusion of energy in a chain of harmonic oscillators with noise, Commun. Math. Phys., 339 (2015) , 407-453.  doi: 10.1007/s00220-015-2417-6.
      T. Komorowski  and  S. Olla , Ballistic and superdiffusive scales in macroscopic evolution of a chain of oscillators, Nonlinearity, 29 (2016) , 962-999.  doi: 10.1088/0951-7715/29/3/962.
      T. Komorowski  and  L. Ryzhik , Passive tracer in a slowly decorrelating random flow with a large mean, Nonlinearity, 20 (2007) , 1215-1239.  doi: 10.1088/0951-7715/20/5/009.
      T. Komorowski  and  Ł. Stȩpień , Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension, Journ. Stat. Phys., 148 (2012) , 1-37.  doi: 10.1007/s10955-012-0528-4.
      T. Komorowski , S. Olla  and  L. Ryzhik , Asymptotics of the solutions of the stochastic lattice wave equation, Arch. Rational Mech. Anal., 209 (2013) , 455-494.  doi: 10.1007/s00205-013-0626-8.
      T. Kurtz , Semigroups of conditioned shifts and approximation of markov processes, Ann. Probab., 3 (1975) , 618-642.  doi: 10.1214/aop/1176996305.
      S. Lepri, R. Livi and A. Politi, Heat transport in low dimensions: Introduction and phenomenology, Thermal Transport in Low Dimensions, edt S. Lepri, LNP, 921 (2016), 1-37.
      J. Lukkarinen  and  H. Spohn , Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal., 183 (2007) , 93-162. 
      A. Mellet , S. Mischler  and  C. Mouhot , Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011) , 493-525.  doi: 10.1007/s00205-010-0354-2.
      S. Peszat and Z. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, 2007.
      M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, American Mathematical Society, 2009.
      H. Spohn , Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., 154 (2014) , 1191-1227.  doi: 10.1007/s10955-014-0933-y.
      D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.
  • 加载中
SHARE

Article Metrics

HTML views(2075) PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return