We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is weakly perturbed by a stochastic term conserving energy and momentum and whose evolution is governed by an Ornstein-Uhlenbeck process. We prove the kinetic limit for the Wigner functions corresponding to the chain. This result generalizes the results of [
Citation: |
N. Ben Abdallah
, A. Mellet
and M. Puel
, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011)
, 2249-2262.
doi: 10.1142/S0218202511005738.![]() ![]() ![]() |
|
R. J. Adler,
Geometry of Random Fields, Wiley, 1981.
![]() ![]() |
|
R. J. Adler,
An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Lecture Notes-Monograph Series, Vol. 12, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, 1990.
![]() ![]() |
|
G. Bal
, G. Papanicolaou
and L. Ryzhik
, Radiative transport limit for the random Schrödinger equation, Nonlinearity, 15 (2002)
, 513-529.
doi: 10.1088/0951-7715/15/2/315.![]() ![]() ![]() |
|
G. Basile
, From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014)
, 1301-1322.
doi: 10.1214/13-AIHP554.![]() ![]() ![]() |
|
G. Basile
, C. Bernardin
and S. Olla
, A momentum conserving model with anomalous thermal conductivity in low dimension, Physical Review Letters, 96 (2006)
, 204303.
![]() |
|
G. Basile
, S. Olla
and H. Spohn
, Wigner functions and stochastically perturbed lattice dynamics, Arch.Rat.Mech., 195 (2009)
, 171-203.
doi: 10.1007/s00205-008-0205-6.![]() ![]() ![]() |
|
A. Bensoussan
, J. L. Lions
and G. C. Papanicolaou
, Boundary Layers and Homogenization of transport Processes, Publ. RIMS, Kyoto Univ., 15 (1979)
, 53-157.
doi: 10.2977/prims/1195188427.![]() ![]() ![]() |
|
C. Bernardin
, P. Gonçalves
and M. Jara
, 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise, Arch. Ration. Mech. Anal., 220 (2016)
, 505-542.
doi: 10.1007/s00205-015-0936-0.![]() ![]() ![]() |
|
C. Gomez
, Wave decoherence for the random Schrödinger equation with long-range correlations, Comm. Math. Phys., 320 (2013)
, 37-71.
doi: 10.1007/s00220-013-1711-4.![]() ![]() ![]() |
|
H. J. Kushner,
Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, MIT Press Series in Signal Processing, Optimization, and Control, 6. MIT Press, Cambridge, MA, 1984.
![]() ![]() |
|
S. Janson,
Gaussian Hilbert Spaces, Cambridge University Press, 1997.
![]() ![]() |
|
M. Jara
and T. Komorowski
, Limit theorems for some continuous-time random walks, Advances in Applied Probability, 43 (2011)
, 782-813.
doi: 10.1017/S0001867800005140.![]() ![]() ![]() |
|
M. Jara
, T. Komorowski
and S. Olla
, Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob., 19 (2009)
, 2270-2300.
doi: 10.1214/09-AAP610.![]() ![]() ![]() |
|
M. Jara
, T. Komorowski
and S. Olla
, Superdiffusion of energy in a chain of harmonic oscillators with noise, Commun. Math. Phys., 339 (2015)
, 407-453.
doi: 10.1007/s00220-015-2417-6.![]() ![]() ![]() |
|
T. Komorowski
and S. Olla
, Ballistic and superdiffusive scales in macroscopic evolution of a chain of oscillators, Nonlinearity, 29 (2016)
, 962-999.
doi: 10.1088/0951-7715/29/3/962.![]() ![]() ![]() |
|
T. Komorowski
and L. Ryzhik
, Passive tracer in a slowly decorrelating random flow with a large mean, Nonlinearity, 20 (2007)
, 1215-1239.
doi: 10.1088/0951-7715/20/5/009.![]() ![]() ![]() |
|
T. Komorowski
and Ł. Stȩpień
, Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension, Journ. Stat. Phys., 148 (2012)
, 1-37.
doi: 10.1007/s10955-012-0528-4.![]() ![]() ![]() |
|
T. Komorowski
, S. Olla
and L. Ryzhik
, Asymptotics of the solutions of the stochastic lattice wave equation, Arch. Rational Mech. Anal., 209 (2013)
, 455-494.
doi: 10.1007/s00205-013-0626-8.![]() ![]() ![]() |
|
T. Kurtz
, Semigroups of conditioned shifts and approximation of markov processes, Ann. Probab., 3 (1975)
, 618-642.
doi: 10.1214/aop/1176996305.![]() ![]() ![]() |
|
S. Lepri, R. Livi and A. Politi, Heat transport in low dimensions: Introduction and phenomenology,
Thermal Transport in Low Dimensions, edt S. Lepri, LNP, 921 (2016), 1-37.
![]() ![]() |
|
J. Lukkarinen
and H. Spohn
, Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal., 183 (2007)
, 93-162.
![]() ![]() |
|
A. Mellet
, S. Mischler
and C. Mouhot
, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011)
, 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
|
S. Peszat and Z. Zabczyk,
Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, 2007.
![]() ![]() |
|
M. A. Pinsky,
Introduction to Fourier Analysis and Wavelets, American Mathematical Society, 2009.
![]() ![]() |
|
H. Spohn
, Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., 154 (2014)
, 1191-1227.
doi: 10.1007/s10955-014-0933-y.![]() ![]() ![]() |
|
D. W. Stroock and S. R. S. Varadhan,
Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.
![]() ![]() |