-
Previous Article
Invariant measures for a stochastic Fokker-Planck equation
- KRM Home
- This Issue
-
Next Article
A Vlasov-Poisson plasma of infinite mass with a point charge
On a Fokker-Planck equation for wealth distribution
1. | Department of Mathematics, University of Pavia, Pavia, Italy |
2. | Department of Mathematics, University of Pavia, and IMATI-CNR, Pavia, Italy |
We study here a Fokker-Planck equation with variable coefficient of diffusion and boundary conditions which appears in the study of the wealth distribution in a multi-agent society [
References:
[1] |
A. Arnold, P. Markowich, G. Toscani and A. Unterreiter,
On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.
doi: 10.1081/PDE-100002246. |
[2] |
J. F. Bouchaud and M. Mézard,
Wealth condensation in a simple model of economy, Physica A, 282 (2000), 536-545.
doi: 10.1016/S0378-4371(00)00205-3. |
[3] |
M. J. Cáceres and G. Toscani,
Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys., 128 (2007), 883-925.
doi: 10.1007/s10955-007-9329-6. |
[4] |
J. A. Carrillo and G. Toscani,
Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198.
|
[5] |
J. A. Carrillo, S. Cordier and G. Toscani,
Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discr. Cont. Dynamical Syst. A, 24 (2009), 59-81.
doi: 10.3934/dcds.2009.24.59. |
[6] |
A. Chakraborti,
Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321.
doi: 10.1142/S0129183102003905. |
[7] |
A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170. Google Scholar |
[8] |
A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe,
Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126.
doi: 10.1103/PhysRevE.72.026126. |
[9] |
H. Chernoff,
A note on an inequality involving the normal distribution, Ann. Probab., 9 (1981), 533-535.
doi: 10.1214/aop/1176994428. |
[10] |
S. Cordier, L. Pareschi and G. Toscani,
On a kinetic model for a simple market economy, J. Statist. Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[11] |
B. Düring, D. Matthes and G. Toscani, Kinetic Equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp. |
[12] |
B. Düring, D. Matthes and G. Toscani,
A Boltzmann-type approach to the formation of
wealth distribution curves, (Notes of the Porto Ercole School, June 2008), Riv. Mat. Univ. Parma, 1 (2009), 199-261.
|
[13] |
W. Feller,
Two singular diffusion problems, Ann. Math., 54 (1951), 173-182.
doi: 10.2307/1969318. |
[14] |
W. Feller,
An Introduction to Probability Theory and Its Applications, Vol. Ⅰ. John Wiley & Sons Inc., New York, 1968. |
[15] |
G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani,
Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Mod. Meth. Appl. Scie., 27 (2017), 115-158.
doi: 10.1142/S0218202517400048. |
[16] |
G. Gabetta, G. Toscani and B. Wennberg,
Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934.
doi: 10.1007/BF02179298. |
[17] |
O. Johnson and A. Barron,
Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields, 129 (2004), 391-409.
doi: 10.1007/s00440-004-0344-0. |
[18] |
C. A. Klaassen,
On an inequality of Chernoff, Ann. Probability, 13 (1985), 966-974.
doi: 10.1214/aop/1176992917. |
[19] |
C. Le Bris and P. L. Lions,
Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317.
doi: 10.1080/03605300801970952. |
[20] |
D. Matthes, A. Juengel and G. Toscani,
Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.
doi: 10.1007/s00205-010-0331-9. |
[21] |
D. Matthes and G. Toscani,
On steady distributions of kinetic models of conservative economies, J. Statist. Phys., 130 (2008), 1087-1117.
doi: 10.1007/s10955-007-9462-2. |
[22] | L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, Oxford, 2013. Google Scholar |
[23] |
V. Pareto,
Cours d'Économie Politique, Tome Premier, Rouge Éd., Lausanne 1896; Tome second, Pichon Éd., Paris, 1897.
doi: 10.3917/droz.paret.1964.01. |
[24] |
G. Toscani,
Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541.
doi: 10.1090/qam/1704435. |
[25] |
G. Toscani and C. Villani,
Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas, J. Statist. Phys., 94 (1999), 619-637.
doi: 10.1023/A:1004589506756. |
show all references
References:
[1] |
A. Arnold, P. Markowich, G. Toscani and A. Unterreiter,
On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.
doi: 10.1081/PDE-100002246. |
[2] |
J. F. Bouchaud and M. Mézard,
Wealth condensation in a simple model of economy, Physica A, 282 (2000), 536-545.
doi: 10.1016/S0378-4371(00)00205-3. |
[3] |
M. J. Cáceres and G. Toscani,
Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys., 128 (2007), 883-925.
doi: 10.1007/s10955-007-9329-6. |
[4] |
J. A. Carrillo and G. Toscani,
Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198.
|
[5] |
J. A. Carrillo, S. Cordier and G. Toscani,
Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discr. Cont. Dynamical Syst. A, 24 (2009), 59-81.
doi: 10.3934/dcds.2009.24.59. |
[6] |
A. Chakraborti,
Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321.
doi: 10.1142/S0129183102003905. |
[7] |
A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170. Google Scholar |
[8] |
A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe,
Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126.
doi: 10.1103/PhysRevE.72.026126. |
[9] |
H. Chernoff,
A note on an inequality involving the normal distribution, Ann. Probab., 9 (1981), 533-535.
doi: 10.1214/aop/1176994428. |
[10] |
S. Cordier, L. Pareschi and G. Toscani,
On a kinetic model for a simple market economy, J. Statist. Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[11] |
B. Düring, D. Matthes and G. Toscani, Kinetic Equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp. |
[12] |
B. Düring, D. Matthes and G. Toscani,
A Boltzmann-type approach to the formation of
wealth distribution curves, (Notes of the Porto Ercole School, June 2008), Riv. Mat. Univ. Parma, 1 (2009), 199-261.
|
[13] |
W. Feller,
Two singular diffusion problems, Ann. Math., 54 (1951), 173-182.
doi: 10.2307/1969318. |
[14] |
W. Feller,
An Introduction to Probability Theory and Its Applications, Vol. Ⅰ. John Wiley & Sons Inc., New York, 1968. |
[15] |
G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani,
Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Mod. Meth. Appl. Scie., 27 (2017), 115-158.
doi: 10.1142/S0218202517400048. |
[16] |
G. Gabetta, G. Toscani and B. Wennberg,
Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934.
doi: 10.1007/BF02179298. |
[17] |
O. Johnson and A. Barron,
Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields, 129 (2004), 391-409.
doi: 10.1007/s00440-004-0344-0. |
[18] |
C. A. Klaassen,
On an inequality of Chernoff, Ann. Probability, 13 (1985), 966-974.
doi: 10.1214/aop/1176992917. |
[19] |
C. Le Bris and P. L. Lions,
Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317.
doi: 10.1080/03605300801970952. |
[20] |
D. Matthes, A. Juengel and G. Toscani,
Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.
doi: 10.1007/s00205-010-0331-9. |
[21] |
D. Matthes and G. Toscani,
On steady distributions of kinetic models of conservative economies, J. Statist. Phys., 130 (2008), 1087-1117.
doi: 10.1007/s10955-007-9462-2. |
[22] | L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, Oxford, 2013. Google Scholar |
[23] |
V. Pareto,
Cours d'Économie Politique, Tome Premier, Rouge Éd., Lausanne 1896; Tome second, Pichon Éd., Paris, 1897.
doi: 10.3917/droz.paret.1964.01. |
[24] |
G. Toscani,
Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541.
doi: 10.1090/qam/1704435. |
[25] |
G. Toscani and C. Villani,
Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas, J. Statist. Phys., 94 (1999), 619-637.
doi: 10.1023/A:1004589506756. |
[1] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[2] |
John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371 |
[3] |
Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 |
[4] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[5] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[6] |
Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013 |
[7] |
Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028 |
[8] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[9] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[10] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[11] |
Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002 |
[12] |
Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041 |
[13] |
Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044 |
[14] |
Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125 |
[15] |
Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008 |
[16] |
Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 |
[17] |
Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028 |
[18] |
Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 |
[19] |
Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583 |
[20] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]