April  2018, 11(2): 397-408. doi: 10.3934/krm.2018018

Regularity theorems for a biological network formulation model in two space dimensions

Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

Received  December 2016 Revised  May 2017 Published  January 2018

We present several regularity results for a biological network formulation model originally introduced by D. Cai and D. Hu [13]. A consequence of these results is that a stationary weak solution must be a classical one in two space dimensions. Our mathematical analysis is based upon the weakly monotone function theory and Hardy space methods.

Citation: Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic & Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018
References:
[1]

G. AlbiM. ArtinaM. Fornasier and P. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar

[2]

S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), 309-340.   Google Scholar

[3]

R. CoifmanP. L. LionsY. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.   Google Scholar

[4]

G. Di Fazio, $ L^p$ Estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420.   Google Scholar

[5]

L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton 1992.  Google Scholar

[7]

F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393.  doi: 10.1090/S0002-9947-1962-0139735-8.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.  Google Scholar

[9]

J. HaskovecP. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar

[10]

J. HaskovecP. MarkowichB. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar

[11]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.  Google Scholar

[12]

D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28-31,2014, Shanghai. Google Scholar

[13]

D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.  doi: 10.1103/PhysRevLett.111.138701.  Google Scholar

[14]

R. L. Johnson and J. C. Neugebauer, Properties of BMO functions whose reciprocals are also BMO, Z. Anal. Anwendungen, 12 (1993), 3-11.  doi: 10.4171/ZAA/583.  Google Scholar

[15]

J. Kinnunen, Higher integrability with weights, Annales Academia Scientiarum Fennica Series A.I. Mathematica, 19 (1994), 355-366.   Google Scholar

[16]

J. -G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, to appear. Google Scholar

[17]

J. J. Manfredi, Weakly monotone functions, J. Geometric Analysis, 4 (1994), 393-402.  doi: 10.1007/BF02921588.  Google Scholar

[18]

S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., 21 (1989), 245-248.  doi: 10.1090/S0273-0979-1989-15818-7.  Google Scholar

[19]

J. R. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, 134 North-Holland, Amsterdam, 1987.  Google Scholar

[20]

S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations, 19 (1994), 277-319.  doi: 10.1080/03605309408821017.  Google Scholar

[21]

X. Xu, Existence theorems for the quantum drift-diffusion system with mixed boundary conditions, Commun. Contemp. Math. , 18 (2016), 1550048, 21 pp.  Google Scholar

show all references

References:
[1]

G. AlbiM. ArtinaM. Fornasier and P. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059.  Google Scholar

[2]

S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), 309-340.   Google Scholar

[3]

R. CoifmanP. L. LionsY. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.   Google Scholar

[4]

G. Di Fazio, $ L^p$ Estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420.   Google Scholar

[5]

L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton 1992.  Google Scholar

[7]

F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393.  doi: 10.1090/S0002-9947-1962-0139735-8.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.  Google Scholar

[9]

J. HaskovecP. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar

[10]

J. HaskovecP. MarkowichB. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar

[11]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.  Google Scholar

[12]

D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28-31,2014, Shanghai. Google Scholar

[13]

D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.  doi: 10.1103/PhysRevLett.111.138701.  Google Scholar

[14]

R. L. Johnson and J. C. Neugebauer, Properties of BMO functions whose reciprocals are also BMO, Z. Anal. Anwendungen, 12 (1993), 3-11.  doi: 10.4171/ZAA/583.  Google Scholar

[15]

J. Kinnunen, Higher integrability with weights, Annales Academia Scientiarum Fennica Series A.I. Mathematica, 19 (1994), 355-366.   Google Scholar

[16]

J. -G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, to appear. Google Scholar

[17]

J. J. Manfredi, Weakly monotone functions, J. Geometric Analysis, 4 (1994), 393-402.  doi: 10.1007/BF02921588.  Google Scholar

[18]

S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., 21 (1989), 245-248.  doi: 10.1090/S0273-0979-1989-15818-7.  Google Scholar

[19]

J. R. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, 134 North-Holland, Amsterdam, 1987.  Google Scholar

[20]

S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations, 19 (1994), 277-319.  doi: 10.1080/03605309408821017.  Google Scholar

[21]

X. Xu, Existence theorems for the quantum drift-diffusion system with mixed boundary conditions, Commun. Contemp. Math. , 18 (2016), 1550048, 21 pp.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[13]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[14]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[15]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[19]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (70)
  • HTML views (268)
  • Cited by (4)

Other articles
by authors

[Back to Top]