June  2018, 11(3): 441-467. doi: 10.3934/krm.2018020

Wall effect on the motion of a rigid body immersed in a free molecular flow

School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

I thank Tatsuo Iguchi for reading the paper very carefully

Received  March 2017 Revised  June 2017 Published  March 2018

Motion of a rigid body immersed in a semi-infinite expanse of free molecular gas in a $ d$-dimensional region bounded by an infinite plane wall is studied. The free molecular flow is described by the free Vlasov equation with the specular boundary condition. We show that the velocity $ V(t)$ of the body approaches its terminal velocity $ V_{∞}$ according to a power law $ V_{∞}-V(t)≈ t^{-(d-1)}$ by carefully analyzing the pre-collisions due to the presence of the wall. The exponent $ d-1$ is smaller than $ d+2$ for the case without the wall found in the classical work by Caprino, Marchioro and Pulvirenti [Comm. Math. Phys., 264 (2006), 167-189] and thus slower convergence results from the presence of the wall.

Citation: Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic and Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020
References:
[1]

K. AokiG. CavallaroC. Marchioro and M. Pulvirenti, On the motion of a body in thermal equilibrium immersed in a perfect gas, M2AN Math. Model. Numer. Anal., 42 (2008), 263-275.  doi: 10.1051/m2an:2008007.

[2]

A. BelmonteJ. Jacobsen and A. Jayaraman, Monotone solutions of a nonautonomous differential equation for a sedimenting sphere, Electron. J. Differ. Eq., 2001 (2001), 1-17. 

[3]

P. Buttà, G. Cavallaro and C. Marchioro, Mathematical Models of Viscous Friction, Lecture Notes in Mathematics, 2135 Springer, Cham, 2015. doi: 10.1007/978-3-319-14759-8.

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a microscopic model of viscous friction, Math. Models Methods Appl. Sci., 17 (2007), 1369-1403.  doi: 10.1142/S0218202507002315.

[5]

S. CaprinoC. Marchioro and M. Pulvirenti, Approach to equilibrium in a microscopic model of friction, Comm. Math. Phys., 264 (2006), 167-189.  doi: 10.1007/s00220-006-1542-7.

[6]

G. Cavallaro, On the motion of a convex body interacting with a perfect gas in the mean-field approximation, Rend. Mat. Appl., 27 (2007), 123-145. 

[7]

G. Cavallaro and C. Marchioro, On the approach to equilibrium for a pendulum immersed in a Stokes fluid, Math. Models Methods Appl. Sci., 20 (2010), 1999-2019.  doi: 10.1142/S0218202510004854.

[8]

G. CavallaroC. Marchioro and T. Tsuji, Approach to equilibrium of a rotating sphere in a Stokes flow, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 57 (2011), 211-228.  doi: 10.1007/s11565-011-0127-3.

[9]

X. Chen and W. Strauss, Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles, Arch. Ration. Mech. Anal., 211 (2014), 879-910.  doi: 10.1007/s00205-013-0675-z.

[10]

X. Chen and W. Strauss, Velocity reversal criterion of a body immersed in a sea of particles, Comm. Math. Phys., 338 (2015), 139-168.  doi: 10.1007/s00220-015-2368-y.

[11]

C. Fanelli, F. Sisti and G. V. Stagno, Time dependent friction in a free gas, J. Math. Phys., 57 (2016), 033501, 12 pp. doi: 10.1063/1.4943013.

[12]

C. Ricciuti and F. Sisti, Effects of concavity on the motion of a body immersed in a Vlasov gas, SIAM J. Math. Anal., 46 (2014), 3579-3611.  doi: 10.1137/140954003.

show all references

I thank Tatsuo Iguchi for reading the paper very carefully

References:
[1]

K. AokiG. CavallaroC. Marchioro and M. Pulvirenti, On the motion of a body in thermal equilibrium immersed in a perfect gas, M2AN Math. Model. Numer. Anal., 42 (2008), 263-275.  doi: 10.1051/m2an:2008007.

[2]

A. BelmonteJ. Jacobsen and A. Jayaraman, Monotone solutions of a nonautonomous differential equation for a sedimenting sphere, Electron. J. Differ. Eq., 2001 (2001), 1-17. 

[3]

P. Buttà, G. Cavallaro and C. Marchioro, Mathematical Models of Viscous Friction, Lecture Notes in Mathematics, 2135 Springer, Cham, 2015. doi: 10.1007/978-3-319-14759-8.

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a microscopic model of viscous friction, Math. Models Methods Appl. Sci., 17 (2007), 1369-1403.  doi: 10.1142/S0218202507002315.

[5]

S. CaprinoC. Marchioro and M. Pulvirenti, Approach to equilibrium in a microscopic model of friction, Comm. Math. Phys., 264 (2006), 167-189.  doi: 10.1007/s00220-006-1542-7.

[6]

G. Cavallaro, On the motion of a convex body interacting with a perfect gas in the mean-field approximation, Rend. Mat. Appl., 27 (2007), 123-145. 

[7]

G. Cavallaro and C. Marchioro, On the approach to equilibrium for a pendulum immersed in a Stokes fluid, Math. Models Methods Appl. Sci., 20 (2010), 1999-2019.  doi: 10.1142/S0218202510004854.

[8]

G. CavallaroC. Marchioro and T. Tsuji, Approach to equilibrium of a rotating sphere in a Stokes flow, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 57 (2011), 211-228.  doi: 10.1007/s11565-011-0127-3.

[9]

X. Chen and W. Strauss, Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles, Arch. Ration. Mech. Anal., 211 (2014), 879-910.  doi: 10.1007/s00205-013-0675-z.

[10]

X. Chen and W. Strauss, Velocity reversal criterion of a body immersed in a sea of particles, Comm. Math. Phys., 338 (2015), 139-168.  doi: 10.1007/s00220-015-2368-y.

[11]

C. Fanelli, F. Sisti and G. V. Stagno, Time dependent friction in a free gas, J. Math. Phys., 57 (2016), 033501, 12 pp. doi: 10.1063/1.4943013.

[12]

C. Ricciuti and F. Sisti, Effects of concavity on the motion of a body immersed in a Vlasov gas, SIAM J. Math. Anal., 46 (2014), 3579-3611.  doi: 10.1137/140954003.

Figure 1.  A two dimensional picture of a cylinder immersed in a semi-infinite expanse of gas in a region bounded by an infinite plane wall is shown. The radius of the cylinder is $R$ and the height is $h$. The distance between the cylinder and the wall is denoted by $X(t)$ and the velocity by $V(t) = dX(t)/dt$. A constant force $E$ is applied in the direction of the axis of the cylinder and a drag force $D_V(t)$ is exerted to the cylinder from the surrounding gas.
Figure 2.  A two dimensional picture of a pre-collision at $C_{W}^{+}(\tilde{\tau}_1)$ is shown. The horizontal distance traversed by the cylinder and the characteristic curve $x(s)$ from $\tilde{\tau}_1$ to $t$ coincide.
Figure 3.  Two dimensional picture of a pre-collision at $C_{W}^{-}(\tau_2)$ via pre-collision at the plane wall. The sum of the horizontal distance traversed by the cylinder and the characteristic curve $x(s)$ from $\tau_2$ to $t$ equals $2X(t)$.
[1]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic and Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209

[4]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1797-1809. doi: 10.3934/dcdsb.2021028

[5]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052

[6]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[7]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[8]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure and Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[9]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[10]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088

[13]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[14]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[15]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[16]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[17]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[18]

Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1043-1058. doi: 10.3934/dcdsb.2019207

[19]

Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030

[20]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (195)
  • HTML views (216)
  • Cited by (2)

Other articles
by authors

[Back to Top]