June  2018, 11(3): 469-490. doi: 10.3934/krm.2018021

Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary

Institute of Mathematics, Hunan University, Changsha 410082, China

Received  April 2017 Revised  July 2017 Published  March 2018

Fund Project: The research was supported by NSFC (Grant Nos.11501187, 11771132) and Fundamental Research Funds for the Central Universities.

This paper concerns the low Mach number limit of weak solutions to the compressible Navier-Stokes equations for isentropic fluids in a bounded domain with a Navier-slip boundary condition. In [2], it has been proved that if the velocity is imposed the homogeneous Dirichlet boundary condition, as the Mach number goes to 0, the velocity of the compressible flow converges strongly in $ L^2$ under the geometrical assumption (H) on the domain. We justify the same strong convergence when the slip length in the Navier condition is the reciprocal of the square root of the Mach number.

Citation: Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021
References:
[1]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[2]

B. DesjardinsE. GrenierP.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 78 (1999), 461-471.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[3]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[4]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[5]

N. Jiang and N. Masmoudi, On the construction of boundary layers in the incompressible limit with boundary, J. Math. Pures Appl. (9), 103 (2015), 269-290.  doi: 10.1016/j.matpur.2014.04.004.  Google Scholar

[6]

N. Jiang and N. Masmoudi, Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I, Comm. Pure Appl. Math., 70 (2017), 90-171.  doi: 10.1002/cpa.21631.  Google Scholar

[7]

P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. (9), 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[8]

P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[9]

P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[10]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[11]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.  Google Scholar

show all references

References:
[1]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279.  doi: 10.1098/rspa.1999.0403.  Google Scholar

[2]

B. DesjardinsE. GrenierP.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 78 (1999), 461-471.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[3]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[4]

E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76 (1997), 477-498.  doi: 10.1016/S0021-7824(97)89959-X.  Google Scholar

[5]

N. Jiang and N. Masmoudi, On the construction of boundary layers in the incompressible limit with boundary, J. Math. Pures Appl. (9), 103 (2015), 269-290.  doi: 10.1016/j.matpur.2014.04.004.  Google Scholar

[6]

N. Jiang and N. Masmoudi, Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I, Comm. Pure Appl. Math., 70 (2017), 90-171.  doi: 10.1002/cpa.21631.  Google Scholar

[7]

P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. (9), 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[8]

P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[9]

P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[10]

S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), 476-512.  doi: 10.1006/jdeq.1994.1157.  Google Scholar

[11]

L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (126)
  • HTML views (268)
  • Cited by (1)

Other articles
by authors

[Back to Top]