June  2018, 11(3): 547-596. doi: 10.3934/krm.2018024

High order approximation for the Boltzmann equation without angular cutoff

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

School of Mathematics, Yunnan Normal University, Kunming 650500, China

* Corresponding author: Yulong Zhou

Received  March 2017 Revised  September 2017 Published  March 2018

In order to solve the Boltzmann equation numerically, in the present work, we propose a new model equation to approximate the Boltzmann equation without angular cutoff. Here the approximate equation incorporates Boltzmann collision operator with angular cutoff and the Landau collision operator. As a first step, we prove the well-posedness theory for our approximate equation. Then in the next step we show the error estimate between the solutions to the approximate equation and the original equation. Compared to the standard angular cutoff approximation method, our method results in higher order of accuracy.

Citation: Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic and Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024
References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math., 52 (2012), 433-463.  doi: 10.1215/21562261-1625154.

[3]

L. Arkeryd, On the Boltzmann equation, Arch. Ration. Mech. Anal., 45 (1972), 1-16. 

[4]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions I: spatially homogeneous case, Arch. Ration. Mech. Anal., 201 (2011), 501-548.  doi: 10.1007/s00205-010-0393-8.

[5]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.

[6]

L. Desvillettes and C. Villani, On the spatially homogeneous landau equation for hard potentials part i: Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.

[7]

N. Fournier and D. Godinho, Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff, Comm. Math. Phys., 316 (2012), 307-344.  doi: 10.1007/s00220-012-1578-9.

[8]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 157-199.  doi: 10.24033/asens.2318.

[9]

L. He, Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit, J. Stat. Phys., 155 (2014), 151-210.  doi: 10.1007/s10955-014-0932-z.

[10]

L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Comm. Math. Phys., 312 (2012), 447-476.  doi: 10.1007/s00220-012-1481-4.

[11]

L. He, Sharp bounds for Boltzmann and Landau collision operators, preprint, arXiv: 1604.06981.

[12]

L. -B. He and J. -C. Jiang, On the global dynamics of the inhomogeneous Boltzmann equations without angular cutoff: Hard potentials and Maxwellian molecules, preprint, arXiv: 1710.00315.

[13]

Z. HuoY. MorimotoS. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, 1 (2008), 453-489.  doi: 10.3934/krm.2008.1.453.

[14]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.

[15]

S. Mischler and C. Mouhot, Kac's program in kinetic theory, Invent. Math., 193 (2013), 1-147.  doi: 10.1007/s00222-012-0422-3.

[16]

S. MischlerC. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.  doi: 10.1007/s00440-013-0542-8.

[17]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.

[18]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173 (2004), 169-212. 

[19]

L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Comm. Math. Phys., 348 (2016), 69-100.  doi: 10.1007/s00220-016-2757-x.

show all references

References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math., 52 (2012), 433-463.  doi: 10.1215/21562261-1625154.

[3]

L. Arkeryd, On the Boltzmann equation, Arch. Ration. Mech. Anal., 45 (1972), 1-16. 

[4]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions I: spatially homogeneous case, Arch. Ration. Mech. Anal., 201 (2011), 501-548.  doi: 10.1007/s00205-010-0393-8.

[5]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.

[6]

L. Desvillettes and C. Villani, On the spatially homogeneous landau equation for hard potentials part i: Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.

[7]

N. Fournier and D. Godinho, Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff, Comm. Math. Phys., 316 (2012), 307-344.  doi: 10.1007/s00220-012-1578-9.

[8]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 157-199.  doi: 10.24033/asens.2318.

[9]

L. He, Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit, J. Stat. Phys., 155 (2014), 151-210.  doi: 10.1007/s10955-014-0932-z.

[10]

L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Comm. Math. Phys., 312 (2012), 447-476.  doi: 10.1007/s00220-012-1481-4.

[11]

L. He, Sharp bounds for Boltzmann and Landau collision operators, preprint, arXiv: 1604.06981.

[12]

L. -B. He and J. -C. Jiang, On the global dynamics of the inhomogeneous Boltzmann equations without angular cutoff: Hard potentials and Maxwellian molecules, preprint, arXiv: 1710.00315.

[13]

Z. HuoY. MorimotoS. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, 1 (2008), 453-489.  doi: 10.3934/krm.2008.1.453.

[14]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.

[15]

S. Mischler and C. Mouhot, Kac's program in kinetic theory, Invent. Math., 193 (2013), 1-147.  doi: 10.1007/s00222-012-0422-3.

[16]

S. MischlerC. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.  doi: 10.1007/s00440-013-0542-8.

[17]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.

[18]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173 (2004), 169-212. 

[19]

L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Comm. Math. Phys., 348 (2016), 69-100.  doi: 10.1007/s00220-016-2757-x.

[1]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[2]

Zheng-an Yao, Yu-Long Zhou. High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. Kinetic and Related Models, 2020, 13 (3) : 435-478. doi: 10.3934/krm.2020015

[3]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[4]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic and Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[5]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[6]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[7]

Marcel Braukhoff. Global analytic solutions of the semiconductor Boltzmann-Dirac-Benney equation with relaxation time approximation. Kinetic and Related Models, 2020, 13 (1) : 187-210. doi: 10.3934/krm.2020007

[8]

Willem M. Schouten-Straatman, Hermen Jan Hupkes. Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5017-5083. doi: 10.3934/dcds.2019205

[9]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic and Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[10]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[11]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic and Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[12]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[13]

Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022066

[14]

Zhi-Guo Wu, Wen Guan, Da-Bin Wang. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022058

[15]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic and Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[16]

Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233

[17]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[18]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[19]

Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic and Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755

[20]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic and Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (132)
  • HTML views (235)
  • Cited by (1)

Other articles
by authors

[Back to Top]