June  2018, 11(3): 547-596. doi: 10.3934/krm.2018024

High order approximation for the Boltzmann equation without angular cutoff

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

School of Mathematics, Yunnan Normal University, Kunming 650500, China

* Corresponding author: Yulong Zhou

Received  March 2017 Revised  September 2017 Published  March 2018

In order to solve the Boltzmann equation numerically, in the present work, we propose a new model equation to approximate the Boltzmann equation without angular cutoff. Here the approximate equation incorporates Boltzmann collision operator with angular cutoff and the Landau collision operator. As a first step, we prove the well-posedness theory for our approximate equation. Then in the next step we show the error estimate between the solutions to the approximate equation and the original equation. Compared to the standard angular cutoff approximation method, our method results in higher order of accuracy.

Citation: Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024
References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.  Google Scholar

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math., 52 (2012), 433-463.  doi: 10.1215/21562261-1625154.  Google Scholar

[3]

L. Arkeryd, On the Boltzmann equation, Arch. Ration. Mech. Anal., 45 (1972), 1-16.   Google Scholar

[4]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions I: spatially homogeneous case, Arch. Ration. Mech. Anal., 201 (2011), 501-548.  doi: 10.1007/s00205-010-0393-8.  Google Scholar

[5]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.  Google Scholar

[6]

L. Desvillettes and C. Villani, On the spatially homogeneous landau equation for hard potentials part i: Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[7]

N. Fournier and D. Godinho, Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff, Comm. Math. Phys., 316 (2012), 307-344.  doi: 10.1007/s00220-012-1578-9.  Google Scholar

[8]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 157-199.  doi: 10.24033/asens.2318.  Google Scholar

[9]

L. He, Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit, J. Stat. Phys., 155 (2014), 151-210.  doi: 10.1007/s10955-014-0932-z.  Google Scholar

[10]

L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Comm. Math. Phys., 312 (2012), 447-476.  doi: 10.1007/s00220-012-1481-4.  Google Scholar

[11]

L. He, Sharp bounds for Boltzmann and Landau collision operators, preprint, arXiv: 1604.06981. Google Scholar

[12]

L. -B. He and J. -C. Jiang, On the global dynamics of the inhomogeneous Boltzmann equations without angular cutoff: Hard potentials and Maxwellian molecules, preprint, arXiv: 1710.00315. Google Scholar

[13]

Z. HuoY. MorimotoS. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, 1 (2008), 453-489.  doi: 10.3934/krm.2008.1.453.  Google Scholar

[14]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.  Google Scholar

[15]

S. Mischler and C. Mouhot, Kac's program in kinetic theory, Invent. Math., 193 (2013), 1-147.  doi: 10.1007/s00222-012-0422-3.  Google Scholar

[16]

S. MischlerC. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.  doi: 10.1007/s00440-013-0542-8.  Google Scholar

[17]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[18]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173 (2004), 169-212.   Google Scholar

[19]

L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Comm. Math. Phys., 348 (2016), 69-100.  doi: 10.1007/s00220-016-2757-x.  Google Scholar

show all references

References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.  Google Scholar

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math., 52 (2012), 433-463.  doi: 10.1215/21562261-1625154.  Google Scholar

[3]

L. Arkeryd, On the Boltzmann equation, Arch. Ration. Mech. Anal., 45 (1972), 1-16.   Google Scholar

[4]

Y. Chen and L. He, Smoothing estimates for Boltzmann equation with full-range interactions I: spatially homogeneous case, Arch. Ration. Mech. Anal., 201 (2011), 501-548.  doi: 10.1007/s00205-010-0393-8.  Google Scholar

[5]

L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.  Google Scholar

[6]

L. Desvillettes and C. Villani, On the spatially homogeneous landau equation for hard potentials part i: Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[7]

N. Fournier and D. Godinho, Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff, Comm. Math. Phys., 316 (2012), 307-344.  doi: 10.1007/s00220-012-1578-9.  Google Scholar

[8]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 157-199.  doi: 10.24033/asens.2318.  Google Scholar

[9]

L. He, Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit, J. Stat. Phys., 155 (2014), 151-210.  doi: 10.1007/s10955-014-0932-z.  Google Scholar

[10]

L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Comm. Math. Phys., 312 (2012), 447-476.  doi: 10.1007/s00220-012-1481-4.  Google Scholar

[11]

L. He, Sharp bounds for Boltzmann and Landau collision operators, preprint, arXiv: 1604.06981. Google Scholar

[12]

L. -B. He and J. -C. Jiang, On the global dynamics of the inhomogeneous Boltzmann equations without angular cutoff: Hard potentials and Maxwellian molecules, preprint, arXiv: 1710.00315. Google Scholar

[13]

Z. HuoY. MorimotoS. Ukai and T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, 1 (2008), 453-489.  doi: 10.3934/krm.2008.1.453.  Google Scholar

[14]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.  Google Scholar

[15]

S. Mischler and C. Mouhot, Kac's program in kinetic theory, Invent. Math., 193 (2013), 1-147.  doi: 10.1007/s00222-012-0422-3.  Google Scholar

[16]

S. MischlerC. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probab. Theory Related Fields, 161 (2015), 1-59.  doi: 10.1007/s00440-013-0542-8.  Google Scholar

[17]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[18]

C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173 (2004), 169-212.   Google Scholar

[19]

L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Comm. Math. Phys., 348 (2016), 69-100.  doi: 10.1007/s00220-016-2757-x.  Google Scholar

[1]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[2]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic & Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[3]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[4]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[5]

Marcel Braukhoff. Global analytic solutions of the semiconductor Boltzmann-Dirac-Benney equation with relaxation time approximation. Kinetic & Related Models, 2020, 13 (1) : 187-210. doi: 10.3934/krm.2020007

[6]

Willem M. Schouten-Straatman, Hermen Jan Hupkes. Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5017-5083. doi: 10.3934/dcds.2019205

[7]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[8]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[9]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[10]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[11]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[12]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[13]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[14]

Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic & Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755

[15]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[16]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[17]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[18]

Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299

[19]

Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 407-427. doi: 10.3934/krm.2013.6.407

[20]

Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (41)
  • HTML views (185)
  • Cited by (0)

Other articles
by authors

[Back to Top]