We consider an unpinned chain of harmonic oscillators with periodic boundary conditions, whose dynamics is perturbed by a random flip of the sign of the velocities. The dynamics conserves the total volume (or elongation) and the total energy of the system. We prove that in a diffusive space-time scaling limit the profiles corresponding to the two conserved quantities converge to the solution of a diffusive system of differential equations. While the elongation follows a simple autonomous linear diffusive equation, the evolution of the energy depends on the gradient of the square of the elongation.
Citation: |
[1] |
G. Basile, C. Bernardin, M. Jara, T. Komorowski and S. Olla, Thermal conductivity in harmonic lattices with random collisions, Thermal Transport in Low Dimensions, Lecture Notes in Physics, Springer, 921 (2016), 215-237.
![]() ![]() |
[2] |
C. Bernardin and S. Olla, Fourier law and fluctuations for a microscopic model of heat conduction, J. Stat. Phys., 121 (2005), 271-289.
doi: 10.1007/s10955-005-7578-9.![]() ![]() ![]() |
[3] |
C. Bernardin and S. Olla, Transport properties of a chain of anharmonic oscillators with random flip of velocities, J. Stat. Phys., 145 (2011), 1224-1255.
doi: 10.1007/s10955-011-0385-6.![]() ![]() ![]() |
[4] |
F. R. Gantmakher, The Theory of Matrices, Hirsch Chelsea Publishing Co., New York, 1959.
![]() ![]() |
[5] |
M. Jara, T. Komorowski and S. Olla, Superdiffusion of energy in a system of harmonic oscillators with noise, Commun. Math. Phys., 339 (2015), 407-453.
doi: 10.1007/s00220-015-2417-6.![]() ![]() ![]() |
[6] |
J. L. Kelley, General Topology, Springer-Verlag, New York-Berlin, 1975.
![]() ![]() |
[7] |
T. Komorowski and S. Olla, Ballistic and superdiffusive scales in macroscopic evolution of a chain of oscillators, Nonlinearity, 29 (2016), 962-999.
doi: 10.1088/0951-7715/29/3/962.![]() ![]() ![]() |
[8] |
T. Komorowski and S. Olla, Diffusive propagation of energy in a non-acoustic chain, Arch. Ration. Mech. Anal., 223 (2017), 95-139.
doi: 10.1007/s00205-016-1032-9.![]() ![]() ![]() |
[9] |
J. Lukkarinen, Thermalization in harmonic particle chains with velocity flips, J. Stat. Phys., 155 (2014), 1143-1177.
doi: 10.1007/s10955-014-0930-1.![]() ![]() ![]() |
[10] |
J. Lukkarinen, M. Marcozzi and A. Nota, Harmonic chain with velocity flips: Thermalization and kinetic theory, J. Stat. Phys., 165 (2016), 809-844.
doi: 10.1007/s10955-016-1647-0.![]() ![]() ![]() |
[11] |
J. Lukkarinen and H. Spohn, Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal., 183 (2006), 93-162.
![]() ![]() |
[12] |
M. Simon, Hydrodynamic limit for the velocity-flip model, Stoch. Proc. and Appl., 123 (2013), 3623-3662.
doi: 10.1016/j.spa.2013.05.005.![]() ![]() ![]() |
[13] |
H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22 (1991), 63-80.
doi: 10.1007/BF00400379.![]() ![]() ![]() |