We study the long time behavior of measure-valued isotropic solutions $F_t$ of the Boltzmann equation for Bose-Einstein particles for low temperature. The global in time existence of such solutions $F_t$ that converge at least semi-strongly to equilibrium (the Bose-Einstein distribution) has been proven in previous work and it has been known that the long time strong convergence to equilibrium is equivalent to the long time convergence to the Bose-Einstein condensation. Here we show that if such a solution $F_t$ as a family of Borel measures satisfies a uniform double-size condition (which is also necessary for the strong convergence), then $F_t$ converges strongly to equilibrium as $t$ tends to infinity. We also propose a new condition on the initial datum $F_0$ such that a corresponding solution $F_t$ converges strongly to equilibrium.
Citation: |
[1] |
L. Arkeryd, On low temperature kinetic theory; spin diffusion, Bose Einstein condensates, anyons, J. Stat. Phys., 150 (2013), 1063-1079.
doi: 10.1007/s10955-013-0695-y.![]() ![]() ![]() |
[2] |
L. Arkeryd and A. Nouri, Bose condensates in interaction with excitations: A kinetic model, Comm. Math. Phys., 310 (2012), 765-788.
doi: 10.1007/s00220-012-1415-1.![]() ![]() ![]() |
[3] |
J. Bandyopadhyay and J. J. L. Velázquez, Blow-up rate estimates for the solutions of the
bosonic Boltzmann-Nordheim equation, J. Math. Phys., 56 (2015), 063302, 27 pp.
doi: 10.1063/1.4921917.![]() ![]() ![]() |
[4] |
D. Benedetto, M. Pulvirenti, F. Castella and R. Esposito, On the weak-coupling limit for bosons and fermions, Math. Models Methods Appl. Sci., 15 (2005), 1811-1843.
doi: 10.1142/S0218202505000984.![]() ![]() ![]() |
[5] |
M. Briant and A. Einav, On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys., 163 (2016), 1108-1156.
doi: 10.1007/s10955-016-1517-9.![]() ![]() ![]() |
[6] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Third Edition, Cambridge University Press, Cambridge, 1939.
![]() ![]() |
[7] |
L. Erdös, M. Salmhofer and H.-T. Yau, On the quantum Boltzmann equation, J. Stat. Phys., 116 (2004), 367-380.
doi: 10.1023/B:JOSS.0000037224.56191.ed.![]() ![]() ![]() |
[8] |
M. Escobedo, S. Mischler and M. A. Valle, Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory, Electronic Journal of Differential Equations, Monograph, 4. Southwest Texas State University, San Marcos, TX, 2003. 85 pp.
![]() ![]() |
[9] |
M. Escobedo, S. Mischler and J. J. L. Velázquez, Singular solutions for the Uehling-Uhlenbeck equation, Proc. Roy. Soc. Edinburgh, 138 (2008), 67-107.
doi: 10.1017/S0308210506000655.![]() ![]() ![]() |
[10] |
M. Escobedo and J. J. L. Velázquez, On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons, Comm. Math. Phys., 330 (2014), 331-365.
doi: 10.1007/s00220-014-2034-9.![]() ![]() ![]() |
[11] |
M. Escobedo and J. J. L. Velázquez, Finite time blow-up and condensation for the bosonic Nordheim equation, Invent. Math., 200 (2015), 761-847.
doi: 10.1007/s00222-014-0539-7.![]() ![]() ![]() |
[12] |
C. Josserand, Y. Pomeau and S. Rica, Self-similar singularities in the kinetics of condensation, J. Low Temp. Phys., 145 (2006), 231-265 (2006).
![]() |
[13] |
X. Lu, On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, J. Statist. Phys., 116 (2004), 1597-1649.
doi: 10.1023/B:JOSS.0000041750.11320.9c.![]() ![]() ![]() |
[14] |
X. Lu, The Boltzmann equation for Bose-Einstein particles: Velocity concentration and convergence to equilibrium, J. Statist. Phys., 119 (2005), 1027-1067.
doi: 10.1007/s10955-005-3767-9.![]() ![]() ![]() |
[15] |
X. Lu, The Boltzmann equation for Bose-Einstein particles: Condensation in finite time, J. Stat. Phys., 150 (2013), 1138-1176.
doi: 10.1007/s10955-013-0725-9.![]() ![]() ![]() |
[16] |
X. Lu, The Boltzmann equation for Bose-Einstein particles: Regularity and condensation, J. Stat. Phys., 156 (2014), 493-545.
doi: 10.1007/s10955-014-1026-7.![]() ![]() ![]() |
[17] |
X. Lu, Long time convergence of the Bose-Einstein condensation, J. Stat. Phys., 162 (2016), 652-670.
doi: 10.1007/s10955-015-1427-2.![]() ![]() ![]() |
[18] |
J. Lukkarinen and H. Spohn, Not to normal order--notes on the kinetic limit for weakly interacting quantum fluids, J. Stat. Phys., 134 (2009), 1133-1172.
doi: 10.1007/s10955-009-9682-8.![]() ![]() ![]() |
[19] |
P. A. Markowich and L. Pareschi, Fast conservative and entropic numerical methods for the boson Boltzmann equation, Numer. Math., 99 (2005), 509-532.
doi: 10.1007/s00211-004-0570-5.![]() ![]() ![]() |
[20] |
L. W. Nordheim, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928), 689-698.
doi: 10.1098/rspa.1928.0126.![]() ![]() |
[21] |
A. Nouri, Bose-Einstein condensates at very low temperatures: A mathematical result in the isotropic case, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 649-666.
![]() ![]() |
[22] |
W. Rudin, Real and Complex Analysis, Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp. ISBN: 0-07-054234-1 00A05 (26-01 30-01 46-01).
![]() ![]() |
[23] |
D. V. Semikov and I. I. Tkachev, Kinetics of Bose condensation, Phys. Rev. Lett., 74 (1995), 3093-3097.
![]() |
[24] |
D. V. Semikov and I. I. Tkachev, Condensation of Bose in the kinetic regime, Phys. Rev. D, 55 (1997), 489-502.
![]() |
[25] |
H. Spohn, Kinetics of the Bose-Einstein condensation, Physica D, 239 (2010), 627-634.
doi: 10.1016/j.physd.2010.01.018.![]() ![]() ![]() |
[26] |
E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, I, Phys. Rev., 43 (1933), 552-561.
doi: 10.1103/PhysRev.43.552.![]() ![]() |