\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Microscopic solutions of the Boltzmann-Enskog equation in the series representation

Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • The Boltzmann-Enskog equation for a hard sphere gas is known to have so called microscopic solutions, i.e., solutions of the form of time-evolving empirical measures of a finite number of hard spheres. However, the precise mathematical meaning of these solutions should be discussed, since the formal substitution of empirical measures into the equation is not well-defined. Here we give a rigorous mathematical meaning to the microscopic solutions to the Boltzmann-Enskog equation by means of a suitable series representation.

    Mathematics Subject Classification: Primary: 82C05, 82C40; Secondary: 35Q20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $\mathbf {r_5} = \{1, 1, 2, 3, 2\}$

    Figure 2.   

    Figure 3.   

    Figure 4.   

    Figure 5.  Initial configuration $\delta(\zeta_1-z_1)\delta(\zeta_2-z_2)\delta(\zeta_3-z_1)\delta(\zeta_4-z_1)\cdots$

    Figure 6.  Sum of compositions of trees

    Figure 7.   

  • [1] R. K. Alexander, The Infinite Hard Sphere System, Ph. D thesis, Dep. of Mathematics, University of California at Berkeley, 1975.
    [2] L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation, Comm. PDE, 14 (1989), 1071-1090.  doi: 10.1080/03605308908820644.
    [3] L. Arkeryd and C. Cercignani, Global existence in $L_1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation, J. Stat. Phys., 59 (1990), 845-867.  doi: 10.1007/BF01025854.
    [4] N. Bellomo and M. Lachowicz, On the asymptotic equivalence between the Enskog and the Boltzmann equations, J. Stat. Phys., 51 (1988), 233-247.  doi: 10.1007/BF01015329.
    [5] T. BodineauI. Gallagher and L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones, 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9.
    [6] T. BodineauI. Gallagher and L. Saint-Raymond, From hard sphere dynamics to the Stokes-Fourier equations: an $L^2$ analysis of the Boltzmann-Grad limit, Annals PDE, 3 (2017), Art.2,118 pp.  doi: 10.1007/s40818-016-0018-0.
    [7] T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella, One-sided convergence in the Boltzmann-Grad limit, Ann. Fac. Sci. Toulouse Math. (to appear).
    [8] N. N. Bogoliubov, Problems of dynamic theory in statistical physics, Studies in Statistical Mechanics, North-Holland, Amsterdam; Interscience, New York, 1 (1962), 1–118.
    [9] N. N. Bogolyubov, Microscopic solutions of the Boltzmann-Enskog equation in kinetic theory for elastic balls, Teoret. Mat. Fiz., 24 (1975), 242-247. 
    [10] N. N. Bogolubov and N. N. (Jr.) Bogolubov, Introduction to Quantum Statistical Mechanics, Nauka, Moscow, 1984; World Scientific, Singapore, 2010.
    [11] C. Cercignani, V. I. Gerasimenko and D. Y. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer Academic Publishing, Dordrecht, 1997. doi: 10.1007/978-94-011-5558-8.
    [12] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer–Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.
    [13] R. Denlinger, The propagation of chaos for a rarefied gas of hard spheres in the whole space, Thesis (Ph.D.)–New York University. 2016, arXiv: 1605.00589.
    [14] I. Gallagher, L. Saint Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2013.
    [15] V. I. Gerasimenko and I. V. Gapyak, Hard sphere dynamics and the Enskog equation, Kinet. Relat. Models, 5 (2012), 459-484.  doi: 10.3934/krm.2012.5.459.
    [16] O. E. Lanford, Time evolution of large classical systems, Lect. Notes Phys., 38 (1975), 1-111. 
    [17] M. Pulvirenti, On the Enskog hierarchy: Analiticity, uniqueness and derivability by particle systems, Rend. Circ. Mat. Palermo, 2 (1996), 529-542. 
    [18] M. PulvirentiC. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short-range potentials, Rev. Math. Phys., 26 (2014), 1-64.  doi: 10.1142/S0129055X14500019.
    [19] M. Pulvirenti and S. Simonella, On the evolution of the empirical measure for the hard-sphere dynamics, Bull. Inst. Math. Academia Sinica, 10 (2015), 171-204. 
    [20] M. Pulvirenti and S. Simonella, The Boltzmannn-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones, 207 (2017), 1135-1237.  doi: 10.1007/s00222-016-0682-4.
    [21] S. Simonella, Evolution of correlation functions in the hard sphere dynamics, J. Stat. Phys., 155 (2014), 1191-1221.  doi: 10.1007/s10955-013-0905-7.
    [22] H. Spohn, Large-Scale Dynamics of Interacting Particles, Springer, Berlin, 1991. doi: 10.1007/978-3-642-84371-6.
    [23] A. S. Trushechkin, Derivation of the particle dynamics from kinetic equations, p-Adic, Ultrametric Analysis and Applications, 4 (2012), 130-142.  doi: 10.1134/S2070046612020057.
    [24] A. S. Trushechkin, Functional mechanics and kinetic equations, QP-PQ: Quantum probability and White Noise Analysis, 30 (2013), 339-350.  doi: 10.1142/9789814460026_0029.
    [25] A. S. Trushechkin, Microscopic solutions of the Boltzmann-Enskog equation and the irreversibility problem, Proc. Steklov Inst. Math., 285 (2014), 251-274.  doi: 10.1134/S008154381404018X.
    [26] A. S. Trushechkin, Microscopic and soliton-like solutions of the Boltzmann-Enskog and generalized Enskog equations for elastic and inelastic hard spheres, Kinetic and Relat. Models, 7 (2014), 755-778.  doi: 10.3934/krm.2014.7.755.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(1825) PDF downloads(218) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return