\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On multi-dimensional hypocoercive BGK models

  • * Corresponding author: A. Arnold

    * Corresponding author: A. Arnold 
Abstract / Introduction Full Text(HTML) Figure(2) / Table(6) Related Papers Cited by
  • We study hypocoercivity for a class of linearized BGK models for continuous phase spaces. We develop methods for constructing entropy functionals that enable us to prove exponential relaxation to equilibrium with explicit and physically meaningful rates. In fact, we not only estimate the exponential rate, but also the second time scale governing the time one must wait before one begins to see the exponential relaxation in the $L^1$ distance. This waiting time phenomenon, with a long plateau before the exponential decay "kicks in" when starting from initial data that is well-concentrated in phase space, is familiar from work of Aldous and Diaconis on Markov chains, but is new in our continuous phase space setting. Our strategies are based on the entropy and spectral methods, and we introduce a new "index of hypocoercivity" that is relevant to models of our type involving jump processes and not only diffusion. At the heart of our method is a decomposition technique that allows us to adapt Lyapunov's direct method to our continuous phase space setting in order to construct our entropy functionals. These are used to obtain precise information on linearized BGK models. Finally, we also prove local asymptotic stability of a nonlinear BGK model.

    Mathematics Subject Classification: Primary: 82C40, 35B40; Secondary: 35F25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  These two functions illustrate the time dependent decay estimate from (15). The values of $C_d,\,\lambda^d$ correspond to the 1D case with $L = 2\pi$, and we chose $\mathcal{E}^d(\tilde f^I) = 15$. We also show the two time scales of the BGK equation: $t_{{\rm init}}$ marks the intersection point of the two blue curves and it corresponds to the generic transport time. $t_2: = t_{{\rm init}}+\frac2\lambda$ marks the intersection point of the exponential curve with the value $2/e$, and $t_2-t_{{\rm init}}$ corresponds to the relaxation time scale. For larger values of $L$, $t_{{\rm init}}$ will be much larger

    Figure 2.  For each cell length $L$ the constant $2\mu_*(L)$ obtained from Lemma 3.1 and Remark 9(a) yields a bound for the entropy decay rate in Theorem 1.1

    Table 1.  We give a classification of Hermitian matrices ${\bf C}_1$, such that the associated matrix ${\bf C} = i{\bf C}_1 +{\rm diag}(0,0,c_2,\ldots,c_n)$ is hypocoercive. The restrictions on the coefficients of ${\bf C}_1$ are depicted as $0$ if zero, $\bullet$ if non-zero, and $\ast$ if there is no restriction. Furthermore, we give the corresponding two-parameter ansatz for the transformation matrix ${\bf P} = {\bf I}+{\bf A}$. The guideline to construct an admissible Hermitian perturbation matrix ${\bf A}$, is to put the parameters $\lambda_j$ at the positions of the (non-zero) coupling elements of ${\bf C}_1$. In case (2B2) this will be apparent after a suitable transformation, see the proof of Theorem 2.9

    $ \underline{{\rm Case~ 2A:}}$
    ${\bf C}_1 = \left(\begin{array}{c|c} \begin{matrix}\ast&\ast \\ \ast&\ast \end{matrix} &\begin{matrix}\ast&\bullet&\ast&\cdots&\ast \\ \bullet&\ast&\ast&\cdots&\ast \end{matrix}\\ \hline \begin{matrix}\ast&\bullet \\ \bullet&\ast \\ \ast&\ast \\ \vdots&\vdots \\ \ast&\ast \end{matrix} &\bf{*} \end{array}\right)\!,~~{\bf P}={\bf I} + \left(\begin{array}{c|c} \begin{matrix}0&0&0&\lambda_1 \\ 0&0&\lambda_2&0 \\ 0&\overline{\lambda_2}&0&0 \\ \overline{\lambda_1}&0&0&0 \end{matrix} &{\bf 0}\\ \hline {\bf 0}& {\bf 0} \end{array}\right)\!,~~ (40) $
    where the upper right submatrix ${\bf C}_1^{ur}\in\mathbb{C}^{2\times(n-2)}$ has rank 2. Here, we assume w.l.o.g. that $|c_{1,4}c_{2,3}|\geq |c_{1,3}c_{2,4}|$ and $c_{1,4}\,c_{2,3} \ne c_{1,3}\,c_{2,4}$, such that $c_{2,3}\ne 0$ and $c_{1,4}\ne 0$.
    $ \underline{{\rm Case~ 2B:}}$
    ${\bf C}_1 = \left(\begin{array}{c|c} \begin{matrix}\ast&\ast \\ \ast&\ast \end{matrix}&\begin{matrix}\ast&\ast&\cdots&\ast \\ \bullet&\ast&\cdots&\ast \end{matrix}\\ \hline \begin{matrix}\ast&\bullet \\ \ast&\ast \\ \vdots&\vdots \\ \ast&\ast \end{matrix} &\bf * \end{array}\right)\!, ~~~~~ ~~ {\bf P}={\bf I} +{\bf U} \left(\begin{array}{c|c}\begin{matrix}0&\lambda_1&0 \\ \overline{\lambda_1}&0&\lambda_2 \\ 0&\overline{\lambda_2}&0 \end{matrix}&{\bf 0}\\ \hline {\bf 0}& {\bf 0} \end{array}\right) {\bf U}^* \!,~ (41) $
    where the upper right submatrix ${\bf C}_1^{ur}\in\mathbb{C}^{2\times(n-2)}$ has rank 1. Again, we assume w.l.o.g. that $c_{2,3}\ne 0$. The right choice for the unitary matrix ${\bf U}$ depends on the structure of ${\bf C}_1$:
    $ {\rm (2B1)}~~~~ {\bf C}_1 = \left(\begin{array}{c|c} \begin{matrix}\ast&\bullet \\ \bullet&\ast \end{matrix}& \begin{matrix}0&0&\cdots&0 \\ \bullet&\ast&\cdots&\ast \end{matrix} \\ \hline \begin{matrix}0&\bullet \\ 0&\ast \\ \vdots&\vdots \\ 0&\ast \end{matrix} &\bf * \end{array}\right)\!, ~~~~~ {\bf U} ={\bf I}\,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (42)$
    ${\rm (2B2)} ~~~~~ {\bf C}_1 = \left(\begin{array}{c|c} \begin{matrix}\ast&\ast \\ \ast&\ast \end{matrix}& \begin{matrix}\bullet&\ast&\cdots&\ast \\ \bullet&\ast&\cdots&\ast \end{matrix} \\ \hline \begin{matrix}\bullet&\bullet \\ \ast&\ast \\ \vdots&\vdots \\ \ast&\ast \end{matrix} &\bf * \end{array}\right)\!,~~~~~{\bf U} = \left(\begin{array}{c|c} {\bf U}^{ul}&{\bf 0}\\ \hline {\bf 0}& {\bf I} \end{array}\right) \!,~~~~~~~~~ (43) $
    with upper left submatrix ${\bf U}^{ul}=\tfrac1{\sqrt{|c_{1,3}|^2 +|c_{2,3}|^2}}\begin{pmatrix}\overline{c_{2,3}}&c_{1,3} \\ -\overline{c_{1,3}}&c_{2,3} \end{pmatrix}$.
     | Show Table
    DownLoad: CSV

    Table 2.  Let $\delta_j(\kappa,\alpha,\beta,\gamma,\omega)$ denote the determinant of the upper left $j\times j$ submatrix of ${\bf D}_{\kappa,\alpha,\beta,\gamma,\omega}$ for integers $j = 1,2,\ldots,11$. For our choice $\beta = 2\alpha$, $\gamma = \alpha$ and $\omega = \sqrt{6}\alpha$, the minors $\delta_j(\kappa,\alpha) = \delta_j(\kappa,\alpha,2\alpha,\alpha,\sqrt{6}\alpha)$ are given in this table

    $\delta_1(\kappa,\alpha)$ = $2\ell\alpha$
    $\delta_2(\kappa,\alpha)$ = $4\ell^2\alpha^2$
    $\delta_3(\kappa,\alpha)$ = $8\ell^3\alpha^3$
    $\delta_4(\kappa,\alpha)$ = $44\ell^4 \alpha^4$
    $\delta_5(\kappa,\alpha)$ = $22\ell^3 \alpha^4 (4\ell -4\ell^2 \alpha -{\alpha}/{\kappa^2})$
    $\delta_6(\kappa,\alpha)$ = $\delta_5(\kappa,\alpha) p_6(\kappa,\alpha)/\ell$
        with $p_6(\kappa,\alpha) :=-\tfrac{54}{11} \ell^2 \alpha +2\ell -2\alpha /{\kappa^2}$.
    $\delta_7(\kappa,\alpha)$ = $\frac{2}{11\ell^2} \delta_5(\kappa,\alpha) p_7(\kappa,\alpha)$
        with $p_{7}(\kappa,\alpha) = \big(p_{7,0}(\alpha) +p_{7,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} + p_{7,2}(\alpha)$,
        $p_{7,0}(\alpha) = 93\ell^2 \alpha^2 -34\ell\alpha$, $p_{7,1}(\alpha) = 12\alpha^2$,
        $p_{7,2}(\alpha) = 162\ell^4 \alpha^2 -120\ell^3 \alpha +22\ell^2$.
    $\delta_8(\kappa,\alpha)$ = $44 \ell^3 \alpha^4 \frac{\delta_7(\kappa,\alpha)}{\delta_5(\kappa,\alpha)} p_8(\kappa,\alpha)$
        with $p_8(\kappa,\alpha) = 2\ell^3 \alpha^2 -6\ell^2\alpha +4\ell -{\alpha}/{\kappa^2}$.
    $\delta_9(\kappa,\alpha)$ = $8 \ell \alpha^4 p_8(\kappa,\alpha) p_9(\kappa,\alpha)$
        with $p_{9}(\kappa,\alpha) = \big(p_{9,0}(\alpha) +p_{9,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} + p_{9,2}(\alpha)$,
        $p_{9,0}(\alpha) = -12\ell^3 \alpha^3 +198\ell^2 \alpha^2 -68\ell \alpha$, $p_{9,1}(\alpha) = 24\alpha^2$,
        $p_{9,2}(\alpha) = -81\ell^5 \alpha^3 +411\ell^4 \alpha^2 -262\ell^3 \alpha +44\ell^2$.
    $\delta_{10}(\kappa,\alpha)$ = $2 \delta_9(\kappa,\alpha)$,
    $\delta_{11}(\kappa,\alpha)$ = $64 \ell \alpha^4 p_8(\kappa,\alpha) p_{11}(\kappa,\alpha)$
        with $p_{11}(\kappa,\alpha) = \big(p_{11,0}(\alpha) +p_{11,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} + p_{11,2}(\alpha)$,
        $p_{11,0}(\alpha) = -72\ell^4 \alpha^4 -300\ell^3 \alpha^3 +294\ell^2 \alpha^2 -68\ell\alpha$, $p_{11,1}(\alpha) = 24\alpha^2$,
        $p_{11,2}(\alpha) = 162\ell^6 \alpha^4 -909\ell^5 \alpha^3 +963\ell^4 \alpha^2 -358\ell^3 \alpha +44\ell^2$.
     | Show Table
    DownLoad: CSV

    Table 3.  Matrix ${\bf D}_{\kappa,\alpha,\beta,\gamma,\omega,\eta}$ with $\ell: = 2\pi/L>0$ and $A : = \tfrac{\ell}{\sqrt3} (\sqrt2 \alpha -\sqrt3 \beta)$, $B : = \tfrac2{\sqrt3} \ell (\sqrt2 \beta -\sqrt3 \alpha)$, $C : = \tfrac{\ell}{\sqrt3} (\sqrt2 \eta -\sqrt3 \beta)$, $D : = \tfrac{\ell}{\sqrt3} (\sqrt3 \eta -\sqrt2 \beta)$, $E : = 2-2\ell\omega$, and $F : = 2-2\tfrac{\sqrt2}{\sqrt3} \ell\beta$

    $ \begin{pmatrix} 2\ell\alpha&0&0&0&\tfrac{\sqrt2}{\sqrt3} \ell\alpha&0&0&A&0&\tfrac{\sqrt2}{\sqrt3} \ell\alpha&0&0&0&0&0&0&0&0&0&0&0 \\ 0&B&0&0&0&0&0&- \frac{i}{\kappa} \beta&0&0&-C&0&0&\tfrac{3+\sqrt3}{6} \ell\beta&0&\tfrac{3-\sqrt3}{6} \ell\beta&0&0&0&0&0 \\ 0&0&2\ell \gamma&0&0&-\frac{i}{\kappa} \gamma&0&0&0&0&0&\sqrt2 \ell \gamma&0&0&0&0&0&0&0&0&0 \\ 0&0&0&2\ell\omega&0&0&-\frac{i}{\kappa} \omega&0&0&0&0&0&\sqrt2 \ell \omega&0&0&0&0&0&0&0&0 \\ \tfrac{\sqrt2}{\sqrt3} \ell\alpha&0&0&0&2\ell\eta&0&0&D&0&\ell\eta&-\frac{i}{\kappa} \eta&0&0&0&0&0&0&0&0&0&2\ell\eta \\ 0&0&\frac{i}{\kappa} \gamma&0&0&2-2\ell\gamma&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0 \\ 0&0&0&\frac{i}{\kappa} \omega&0&0&E&0&0&0&0&0&0&0&0&0&0&0&0&0&0 \\ A&\frac{i}{\kappa} \beta&0&0&D&0&0&F&0&-\tfrac{\sqrt2}{\sqrt3} \ell\beta&0&0&0&0&0&0&0&0&0&0&0 \\ 0&0&0&0&0&0&0&0&2&0&0&0&0&0&0&0&0&0&0&0&0 \\ \tfrac{\sqrt2}{\sqrt3} \ell\alpha&0&0&0&\ell\eta&0&0&-\tfrac{\sqrt2}{\sqrt3} \ell\beta&0&2&0&0&0&0&0&0&0&0&0&0&0 \\ 0&-C&0&0&\frac{i}{\kappa} \eta&0&0&0&0&0&2-2\ell\eta&0&0&-\tfrac{1}{\sqrt{3}} \ell\eta&0&-\tfrac{1}{\sqrt{3}} \ell\eta&0&0&0&0&0 \\ 0&0&\sqrt2 \ell\gamma&0&0&0&0&0&0&0&0&2&0&0&0&0&0&0&0&0&0 \\ 0&0&0&\sqrt2 \ell\omega&0&0&0&0&0&0&0&0&2&0&0&0&0&0&0&0&0 \\ 0&\tfrac{3+\sqrt3}{6} \ell\beta&0&0&0&0&0&0&0&0&-\tfrac{1}{\sqrt{3}} \ell\eta&0&0&2&0&0&0&0&0&0&0 \\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&0&0&0&0&0&0 \\ 0&\tfrac{3-\sqrt3}{6} \ell\beta&0&0&0&0&0&0&0&0&-\tfrac{1}{\sqrt{3}} \ell\eta&0&0&0&0&2&0&0&0&0&0 \\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&0&0&0&0 \\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&0&0&0 \\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&0&0 \\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&2&0 \\ 0&0&0&0&2\ell\eta&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&2 \\ \end{pmatrix}$
     | Show Table
    DownLoad: CSV

    Table 4.  Matrix ${\bf D}_{\kappa,\alpha,\sqrt3 \alpha,\alpha,\alpha,\alpha}$ with $\ell: = 2\pi/L>0$ and $B: = 2 (\sqrt2 -1) \ell\alpha$, $E: = 2-2\ell\alpha$, $F: = 2-2\sqrt2 \ell \alpha$

    $ \begin{pmatrix} 2\ell\alpha & 0 & 0 & 0 & \tfrac{\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & \tfrac{\sqrt2 -3}{\sqrt3} \ell \alpha & 0 & \tfrac{\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & B & 0 & 0 & 0 & 0 & 0 & - \frac{i}{\kappa} \sqrt{3}\alpha & 0 & 0 & \tfrac{3-\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & \tfrac{\sqrt3+1}{2} \ell\alpha & 0 & \tfrac{\sqrt3-1}{2} \ell\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2\ell\alpha & 0 & 0 & -\frac{i}{\kappa} \alpha & 0 & 0 & 0 & 0 & 0 & \sqrt2 \ell \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\ell\alpha & 0 & 0 & -\frac{i}{\kappa} \alpha & 0 & 0 & 0 & 0 & 0 & \sqrt2 \ell \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tfrac{\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & 0 & 2\ell\alpha & 0 & 0 & -\frac{B}{2} & 0 & \ell\alpha & -\frac{i}{\kappa} \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\ell\alpha \\ 0 & 0 & \frac{i}{\kappa} \alpha & 0 & 0 & E & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{i}{\kappa} \alpha & 0 & 0 & E & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tfrac{\sqrt2 -3}{\sqrt3} \ell\alpha & \frac{i}{\kappa} \sqrt{3}\alpha & 0 & 0 & -\frac{B}{2} & 0 & 0 & F & 0 & -\sqrt2 \ell \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tfrac{\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & 0 & \ell\alpha & 0 & 0 & -\sqrt2 \ell \alpha & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \tfrac{3-\sqrt2}{\sqrt3} \ell\alpha & 0 & 0 & \frac{i}{\kappa} \alpha & 0 & 0 & 0 & 0 & 0 & E & 0 & 0 & -\tfrac{1}{\sqrt{3}} \ell\alpha & 0 & -\tfrac{1}{\sqrt{3}} \ell\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt2 \ell\alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt2 \ell\alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \tfrac{\sqrt3+1}{2} \ell \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\tfrac{1}{\sqrt{3}} \ell\alpha & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \tfrac{\sqrt3-1}{2} \ell \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\tfrac{1}{\sqrt{3}} \ell\alpha & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\ell\alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ \end{pmatrix} ~~~~(114)$
     | Show Table
    DownLoad: CSV

    Table 5.  Let $\delta_j(\kappa,\alpha,\beta,\gamma,\omega,\eta)$ denote the determinant of the upper left $j\times j$ submatrix of ${\bf D}_{\kappa,\alpha,\beta,\gamma,\omega,\eta}$ for integers $j = 1,2,\ldots,21$. For our choice $\beta = \sqrt3 \alpha$, $\gamma = \alpha$, $\omega = \alpha$ and $\eta = \alpha$, the minors $\delta_j(\kappa,\alpha) = \delta_j(\kappa,\alpha,\sqrt3 \alpha,\alpha,\alpha,\alpha)$ for integers $j = 1,2,\ldots,13$, are given in this table

    $\delta_1(\kappa,\alpha)$ = $2\ell\alpha$
    $\delta_2(\kappa,\alpha)$ = $4(\sqrt2 -1)\ell^2\alpha^2$
    $\delta_3(\kappa,\alpha)$ = $8(\sqrt2 -1)\ell^3\alpha^3$
    $\delta_4(\kappa,\alpha)$ = $16(\sqrt2 -1)\ell^4 \alpha^4$
    $\delta_5(\kappa,\alpha)$ = $\tfrac{80}{3} (\sqrt2 -1)\ell^5 \alpha^5$
    $\delta_6(\kappa,\alpha)$ = $\tfrac{40}{3} (\sqrt2 -1)\ell^4 \alpha^5 p_6(\kappa,\alpha)$
         with $p_6(\kappa,\alpha) = -4\ell^2 \alpha -\frac{\alpha}{\kappa^2} +4\ell$.
    $\delta_7(\kappa,\alpha)$ = $\tfrac{20}{3} (\sqrt2 -1)\ell^3 \alpha^5 p_6(\kappa,\alpha)^2$
    $\delta_8(\kappa,\alpha)$ = $12 \ell^2\ \alpha^5\ p_6(\kappa,\alpha)^2\ p_8(\kappa,\alpha)$
        with $p_8(\kappa,\alpha) = \tfrac{2-3\sqrt2}{3} \ell^2 \alpha -\tfrac56 \frac{\alpha}{\kappa^2} +\tfrac{10}{9}(\sqrt2 -1)\ell$.
    $\delta_9(\kappa,\alpha)$ = $2\ \delta_8(\kappa,\alpha)$
    $\delta_{10}(\kappa,\alpha)$ = $\tfrac43 \ell^2\ \alpha^5\ p_6(\kappa,\alpha)^2\ p_{10}(\kappa,\alpha)$
         with $p_{10}(\kappa,\alpha) = 9((\sqrt2 -1)\ell^2 +\frac1{\kappa^2})\ell \alpha^2$
            $-6((8\sqrt2 -6)\ell^2 +\frac5{\kappa^2})\alpha +40(\sqrt2 -1)\ell$.
    $\delta_{11}(\kappa,\alpha)$ = $\tfrac29 \ell\ \alpha^5\ p_6(\kappa,\alpha)^2\ p_{11}(\kappa,\alpha)$
         with $p_{11}(\kappa,\alpha) = \big(p_{11,0}(\alpha) +p_{11,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} + p_{11,2}(\alpha) \ell^2$,
         $p_{11,0}(\alpha) = (54\sqrt2 -144)\ell^3 \alpha^3 +(672 -72\sqrt2)\ell^2 \alpha^2 -(216 +144\sqrt2)\ell\alpha$,
         $p_{11,1}(\alpha) =18(6 -\ell\alpha) \alpha^2$,
         $p_{11,2}(\alpha) =(9 -54\sqrt2)\ell^3 \alpha^3 +(456\sqrt2 -24) \ell^2 \alpha^2$
           $+(472 -816\sqrt2) \ell \alpha + 480(\sqrt2 -1)$.
    $\delta_{12}(\kappa,\alpha)$ = $\delta_{11}(\kappa,\alpha) \frac{p_{12}(\kappa,\alpha)}{p_6(\kappa,\alpha)}$ = $\tfrac29 \ell\ \alpha^5\ p_6(\kappa,\alpha)\ p_{11}(\kappa,\alpha)\ p_{12}(\kappa,\alpha)$
         with $p_{12}(\kappa,\alpha) = 4\ell^3 \alpha^2 -12\ell^2 \alpha +8\ell -\frac{2 \alpha}{\kappa^2}$.
    $\delta_{13}(\kappa,\alpha)$ = $\delta_{12}(\kappa,\alpha) \frac{p_{12}(\kappa,\alpha)}{p_6(\kappa,\alpha)} = \delta_{11}(\kappa,\alpha) \Big(\frac{p_{12}(\kappa,\alpha)}{p_6(\kappa,\alpha)}\Big)^2 = \tfrac29 \ell\ \alpha^5\ p_{11}(\kappa,\alpha) p_{12}(\kappa,\alpha)^2$
     | Show Table
    DownLoad: CSV

    Table 6.  Let $\delta_j(\kappa,\alpha,\beta,\gamma,\omega,\eta)$ denote the determinant of the upper left $j\times j$ submatrix of ${\bf D}_{\kappa,\alpha,\beta,\gamma,\omega,\eta}$ for integers $j = 14,\ldots,21$. For our choice $\beta = \sqrt3 \alpha$, $\gamma = \alpha$, $\omega = \alpha$ and $\eta = \alpha$, the minors $\delta_j(\kappa,\alpha) = \delta_j(\kappa,\alpha,\sqrt3 \alpha,\alpha,\alpha,\alpha)$ are given in this table

    $\delta_{14}(\kappa,\alpha)$ = $\tfrac1{9\ (1+\sqrt3)^2} \ell\ \alpha^5\ p_{12}(\kappa,\alpha)^2\ p_{14}(\kappa,\alpha)$
         with $p_{14}(\kappa,\alpha) = \big(p_{14,0}(\alpha) +p_{14,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} +\ell^2 p_{14,2}(\alpha)$,
         $p_{14,0}(\alpha) = (-108\sqrt6 -72\sqrt3 -180\sqrt2 -144) \ell^4 \alpha^4$
           $+(360\sqrt6 -1824\sqrt3 +720\sqrt2 -3396) \ell^3 \alpha^3$
           $+(-576\sqrt6 +5952\sqrt3 -1152\sqrt2 +11760) \ell^2 \alpha^2$
           $+(-1152\sqrt6 -1728\sqrt3 -2304\sqrt2 -3456) \ell \alpha$,
         $p_{14,1}(\alpha) = 144\ (\sqrt3 +2)\ (6 -\ell \alpha)\ \alpha^2$,
         $p_{14,2}(\alpha) = (1440 -180\sqrt6 +828\sqrt3 -324\sqrt2) \ell^4 \alpha^4$
           $-(9348 -336\sqrt6 -5400\sqrt3 -624\sqrt2) \ell^3 \alpha^3$
           $+(11056 +3424\sqrt6 +6368\sqrt3 +6864\sqrt2) \ell^2 \alpha^2$
           $+(4192 -6528\sqrt6 +1856\sqrt3 -13056\sqrt2) \ell \alpha$
           $+(3840\sqrt6 -3840\sqrt3 +7680\sqrt2 -7680)$.
    $\delta_{15}(\kappa,\alpha)$ = $2\ \delta_{14}(\kappa,\alpha)$
    $\delta_{16}(\kappa,\alpha)$ = $\tfrac89 \tfrac{2+\sqrt3}{(1+\sqrt3)^2} \ell\ \alpha^5\ p_{12}(\kappa,\alpha)^2\ p_{16}(\kappa,\alpha)$
         with $p_{16}(\kappa,\alpha) = \big(p_{16,0}(\alpha) +p_{16,1}(\alpha) \frac1{\kappa^2}\big) \frac1{\kappa^2} +\ell^2 p_{16,2}(\alpha)$,
         $p_{16,0}(\alpha) = -36 (\sqrt2 +2) \ell^4 \alpha^4 +(144 \sqrt2 -744) \ell^3 \alpha^3$
           $+(-288 \sqrt2 +2976) \ell^2 \alpha^2 +(-576 \sqrt2 -864) \ell \alpha$,
         $p_{16,1}(\alpha) = 72 (6 -\alpha \ell) \alpha^2$,
         $p_{16,2}(\alpha) = 27 \ell^5 \alpha^5 +(-144 \sqrt2 +216) \ell^4 \alpha^4 +(-24 \sqrt2 -2412) \ell^3 \alpha^3$
           $+(1632 \sqrt2 +3104) \ell^2 \alpha^2 +(-3264 \sqrt2 +928) \ell \alpha +1920 (\sqrt2 -1)$.
    $\delta_{17}(\kappa,\alpha)$ = $2\ \delta_{16}(\kappa,\alpha)$
    $\delta_{18}(\kappa,\alpha)$ = $2^2\ \delta_{16}(\kappa,\alpha)$
    $\delta_{19}(\kappa,\alpha)$ = $2^3\ \delta_{16}(\kappa,\alpha)$
    $\delta_{20}(\kappa,\alpha)$ = $2^4\ \delta_{16}(\kappa,\alpha)$
    $\delta_{21}(\kappa,\alpha)$ = $\tfrac{256 (\sqrt3 +2) (24\sqrt2 +61)}{23121 (\sqrt3 +1)^2} \ell\ \alpha^5\ p_{12}(\kappa,\alpha)^2\ p_{21}(\kappa,\alpha)$
         with $p_{21}(\kappa,\alpha) = \Big(p_{21,0}(\alpha) +p_{21,1}(\alpha) \frac1{\kappa^2}\Big) \frac1{\kappa^2} +\ell^2 p_{21,2}(\alpha)$,
         $p_{21,0}(\alpha) = (-1152 \sqrt2 +2928) \ell^5 \alpha^5 +(-468 \sqrt2 -2664) \ell^4 \alpha^4$
           $+(75024 \sqrt2 -175272) \ell^3 \alpha^3 +(-130464 \sqrt2 +300768) \ell^2 \alpha^2$
           $+(-14400 \sqrt2 -25056) \ell \alpha$,
         $p_{21,1}(\alpha) = (-1728 \sqrt2 +4392) (6 -\ell \alpha) \alpha^2$,
         $p_{21,2}(\alpha) = 7707 \ell^5 \alpha^5 +(-25248 \sqrt2 +95000) \ell^4 \alpha^4$
           $+(89448 \sqrt2 -353228) \ell^3 \alpha^3 +(158880 \sqrt2 +38048) \ell^2 \alpha^2$
           $+(-417216 \sqrt2 +464416) \ell \alpha +1920 (85\sqrt2 -109)$.
     | Show Table
    DownLoad: CSV
  • [1] F. Achleitner, A. Arnold and E. A. Carlen, On linear hypocoercive BGK models, in From Particle Systems to Partial Differential Equations III, Springer Proceedings in Mathematics & Statistics, 162 (2016), 1–37. doi: 10.1007/978-3-319-32144-8_1.
    [2] F. AchleitnerA. Arnold and D. Stürzer, Large-time behavior in non-symmetric Fokker-Planck equations, Riv. Mat. Univ. Parma, 6 (2015), 1-68. 
    [3] D. Aldous and P. Diaconis, Shuffling cards and stopping times, Amer. Math. Month., 93 (1986), 333-348.  doi: 10.1080/00029890.1986.11971821.
    [4] A. ArnoldA. Einav and T. Wöhrer, On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations, J. Differential Equations, 264 (2018), 6843-6872.  doi: 10.1016/j.jde.2018.01.052.
    [5] A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric FokkerPlanck equations with linear drift, preprint, arXiv: 1409.5425.
    [6] V. I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge, Mass. -London, 1978.
    [7] P. Bergmann and J. L. Lebowitz, New approach to nonequilibrium processes, Phys. Rev., 99 (1955), 578-587.  doi: 10.1103/PhysRev.99.578.
    [8] P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.
    [9] R. Bosi and M. J. Cáceres, The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria, J. Stat. Phys., 136 (2009), 297-330.  doi: 10.1007/s10955-009-9782-5.
    [10] E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot and C. Schmeiser, Hypocoercivity without confinement, preprint, arXiv: 1708.06180.
    [11] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994. doi: 10.1137/1.9781611970777.
    [12] P. Diaconis, The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. USA, 93 (1996), 1659-1664.  doi: 10.1073/pnas.93.4.1659.
    [13] J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.
    [14] J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris, 347 (2009), 511-516.  doi: 10.1016/j.crma.2009.02.025.
    [15] H. Grad, Note on N-dimensional Hermite polynomials, Comm. Pure Appl. Math., 2 (1949), 325-330.  doi: 10.1002/cpa.3160020402.
    [16] F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359. 
    [17] J. P. Hespanha, Linear Systems Theory, Princeton University Press, Princeton, 2009.
    [18] M. HitrikK. Pravda-Starov and J. Viola, Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators, Bull. Sci. Math., 141 (2017), 615-675. 
    [19] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
    [20] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.
    [21] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin-New York, 1976.
    [22] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.  doi: 10.1017/S0308210500018308.
    [23] B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.  doi: 10.1016/0022-0396(89)90173-3.
    [24] B. Perthame and M. Pulvirenti, Weighted $L^∞$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.  doi: 10.1007/BF00383223.
    [25] M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden Day, San Francisco, 1964.
    [26] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd ed., Academic Press, New York, 1980.
    [27] E. Ringeisen, Contributions a L'etude Mathématique des Équations Cinétiques, PhD thesis, Université Paris Diderot - Paris 7, 1991.
    [28] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.
    [29] T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.
    [30] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141 pp.  doi: 10.1090/S0065-9266-09-00567-5.
  • 加载中

Figures(2)

Tables(6)

SHARE

Article Metrics

HTML views(4956) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return