• Previous Article
    Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes
  • KRM Home
  • This Issue
  • Next Article
    On multi-dimensional hypocoercive BGK models
August  2018, 11(4): 1011-1036. doi: 10.3934/krm.2018039

Linear Boltzmann equation and fractional diffusion

1. 

Laboratoire J.-L. Lions, BP 187, 75252 Paris Cedex 05, France

2. 

CMLS, École polytechnique, 91128 Palaiseau Cedex, France

3. 

DPMMS, University of Cambridge, Wilberforce Road, CB3 0WA Cambridge, United Kingdom

* Corresponding author: François Golse

Received  August 2017 Revised  February 2018 Published  April 2018

Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma\to+∞$ and $ 1-\alpha \sim C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of a kinetic model which is based on the harmonic extension definition of $\sqrt{-\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions ("heavy tails") or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273-280].

Citation: Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039
References:
[1]

P. Aceves-Sánchez and C. Schmeiser, Fractional diffusion limit of a linear kinetic equation in a bounded domain, Kinetic Relat. Mod., 10 (2017), 541-551.  doi: 10.3934/krm.2017021.  Google Scholar

[2]

C. BardosF. GolseB. Perthame and R. Sentis, The nonaccretive radiative transfer equations, existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.  doi: 10.1016/0022-1236(88)90096-1.  Google Scholar

[3]

C. BardosE. BernardF. Golse and R. Sentis, The diffusion approximation for the linear Boltzmann equation with vanishing scattering coefficient, Commun. Math. Sci., 13 (2015), 641-671.  doi: 10.4310/CMS.2015.v13.n3.a3.  Google Scholar

[4]

C. BardosR. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[5]

N. Ben AbdallahA. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models and Methods Appl. Sci., 21 (2011), 2249-2262.  doi: 10.1142/S0218202511005738.  Google Scholar

[6]

A. BensoussanJ.-L. Lions and G.C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.  doi: 10.2977/prims/1195188427.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New-York, Dordrecht, Heidelberg, London, 2011.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I, 299 (1984), 831-834.   Google Scholar

[10]

S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc., New York, 1960.  Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Evolution problems, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58004-8.  Google Scholar

[12]

L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in Advances in Kinetic Theory and Computing (ed. B. Perthame), Ser. Adv. Math. Appl. Sci., 22, World Sci. Publ., River Edge, NJ, 1994,191-203.  Google Scholar

[13]

U. Frisch and H. Frisch, Non LTE Transfer. Asymptotic Expansion for Small $\epsilon$, Mon. Not. R. Astr. Not., 181 (1977), 273-280.   Google Scholar

[14]

F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations (eds. C. Bernardin and Patrícia Gonçalves), Springer Proc. in Math. and Statist. 75, Springer Verlag, Berlin, Heidelberg, 2014, 3-91. doi: 10.1007/978-3-642-54271-8_1.  Google Scholar

[15]

D. Hilbert, Begründung der kinetischen Gastheorie, Math. Ann., 72 (1912), 562-577.  doi: 10.1007/BF01456676.  Google Scholar

[16]

A. M. Il'in and R. Z. Has'minskii (Khasminskii), On the equations of Brownian motion (Russian), Teor. Verojatnost. i Primenen., 9 (1964), 466-491.   Google Scholar

[17]

M. Kwasnicki, Ten equivalent definitions of the fractional laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[18]

E. W. Larsen and J. B. Keller, Asymptotics solutions of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.  doi: 10.1063/1.1666510.  Google Scholar

[19]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[20]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[21]

G. C. Papanicolaou, Asymptotic analysis of transport processes, Bull. Amer. Math. Soc., 81 (1975), 330-392.  doi: 10.1090/S0002-9904-1975-13744-X.  Google Scholar

[22]

G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, 1963.  Google Scholar

[23]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag, Berlin, Heidelberg, 2007.  Google Scholar

[24]

A. Weinberg and E. Wigner, The Physical Theory of Neutron Chain Reactors, The University of Chicago Press, 1958.  Google Scholar

show all references

References:
[1]

P. Aceves-Sánchez and C. Schmeiser, Fractional diffusion limit of a linear kinetic equation in a bounded domain, Kinetic Relat. Mod., 10 (2017), 541-551.  doi: 10.3934/krm.2017021.  Google Scholar

[2]

C. BardosF. GolseB. Perthame and R. Sentis, The nonaccretive radiative transfer equations, existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.  doi: 10.1016/0022-1236(88)90096-1.  Google Scholar

[3]

C. BardosE. BernardF. Golse and R. Sentis, The diffusion approximation for the linear Boltzmann equation with vanishing scattering coefficient, Commun. Math. Sci., 13 (2015), 641-671.  doi: 10.4310/CMS.2015.v13.n3.a3.  Google Scholar

[4]

C. BardosR. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[5]

N. Ben AbdallahA. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models and Methods Appl. Sci., 21 (2011), 2249-2262.  doi: 10.1142/S0218202511005738.  Google Scholar

[6]

A. BensoussanJ.-L. Lions and G.C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.  doi: 10.2977/prims/1195188427.  Google Scholar

[7]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New-York, Dordrecht, Heidelberg, London, 2011.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I, 299 (1984), 831-834.   Google Scholar

[10]

S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc., New York, 1960.  Google Scholar

[11]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Evolution problems, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58004-8.  Google Scholar

[12]

L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in Advances in Kinetic Theory and Computing (ed. B. Perthame), Ser. Adv. Math. Appl. Sci., 22, World Sci. Publ., River Edge, NJ, 1994,191-203.  Google Scholar

[13]

U. Frisch and H. Frisch, Non LTE Transfer. Asymptotic Expansion for Small $\epsilon$, Mon. Not. R. Astr. Not., 181 (1977), 273-280.   Google Scholar

[14]

F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations (eds. C. Bernardin and Patrícia Gonçalves), Springer Proc. in Math. and Statist. 75, Springer Verlag, Berlin, Heidelberg, 2014, 3-91. doi: 10.1007/978-3-642-54271-8_1.  Google Scholar

[15]

D. Hilbert, Begründung der kinetischen Gastheorie, Math. Ann., 72 (1912), 562-577.  doi: 10.1007/BF01456676.  Google Scholar

[16]

A. M. Il'in and R. Z. Has'minskii (Khasminskii), On the equations of Brownian motion (Russian), Teor. Verojatnost. i Primenen., 9 (1964), 466-491.   Google Scholar

[17]

M. Kwasnicki, Ten equivalent definitions of the fractional laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[18]

E. W. Larsen and J. B. Keller, Asymptotics solutions of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.  doi: 10.1063/1.1666510.  Google Scholar

[19]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[20]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[21]

G. C. Papanicolaou, Asymptotic analysis of transport processes, Bull. Amer. Math. Soc., 81 (1975), 330-392.  doi: 10.1090/S0002-9904-1975-13744-X.  Google Scholar

[22]

G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, 1963.  Google Scholar

[23]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag, Berlin, Heidelberg, 2007.  Google Scholar

[24]

A. Weinberg and E. Wigner, The Physical Theory of Neutron Chain Reactors, The University of Chicago Press, 1958.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (141)
  • HTML views (242)
  • Cited by (0)

Other articles
by authors

[Back to Top]