
- Previous Article
- KRM Home
- This Issue
-
Next Article
Linear Boltzmann equation and fractional diffusion
Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes
1. | Beijing Computational Science Research Center, Beijing 100193, China |
2. | Department of Mathematics, National University of Singapore, 119076, Singapore |
We establish a uniform error estimate of a finite difference method for the Klein-Gordon-Schrödinger (KGS) equations with two dimensionless parameters $0<γ≤1$ and $0<\varepsilon≤1$, which are the mass ratio and inversely proportional to the speed of light, respectively. In the simultaneously nonrelativistic and massless limit regimes, i.e., $γ\sim\varepsilon$ and $\varepsilon \to 0^+$, the KGS equations converge singularly to the Schrödinger-Yukawa (SY) equations. When $0<\varepsilon\ll 1$, due to the perturbation of the wave operator and/or the incompatibility of the initial data, which is described by two parameters $α≥0$ and $β≥-1$, the solution of the KGS equations oscillates in time with $O(\varepsilon)$-wavelength, which requires harsh meshing strategy for classical numerical methods. We propose a uniformly accurate method based on two key points: (ⅰ) reformulating KGS system into an asymptotic consistent formulation, and (ⅱ) applying an integral approximation of the oscillatory term. Using the energy method and the limiting equation via the SY equations with an oscillatory potential, we establish two independent error bounds at $O(h^2+τ^2/\varepsilon)$ and $O(h^2+τ^2+τ\varepsilon^{α^*}+\varepsilon^{1+α^*})$ with $h$ mesh size, $τ$ time step and $α^* = \min\{1, α, 1+β\}$. This implies that the method converges uniformly and optimally with quadratic convergence rate in space and uniformly in time at $O(τ^{4/3})$ and $O(τ^{1+\frac{α^*}{2+α^*}})$ for well-prepared ($α^* = 1$) and ill-prepared ($0≤α^*<1$) initial data, respectively. Thus the $\varepsilon$-scalability of the method is $τ = O(1)$ and $h = O(1)$ for $0<\varepsilon≤ 1$, which is significantly better than classical methods. Numerical results are reported to confirm our error bounds. Finally, the method is applied to study the convergence rates of KGS equations to its limiting models in the simultaneously nonrelativistic and massless limit regimes.
References:
[1] |
W. Bao and Y. Cai,
Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.
doi: 10.1090/S0025-5718-2012-02617-2. |
[2] |
W. Bao, X. Dong and S. Wang,
Singular limits of Klein-Gordon-Schrödinger equations to Schrödinger-Yukawa equations, Multiscale Model. Simul., 8 (2010), 1742-1769.
doi: 10.1137/100790586. |
[3] |
W. Bao and C. Su,
Uniform error bounds of a finite difference method for the Zakharov system in the subsnic limit regime via an asymptotic consistent formulation, Multiscale Model. Simul., 15 (2017), 977-1002.
doi: 10.1137/16M1078112. |
[4] |
W. Bao and C. Su, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, Math. Comp, (2017).
doi: 10.1090/mcom/3278. |
[5] |
W. Bao and L. Yang,
Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations, J. Comput. Phys., 225 (2007), 1863-1893.
doi: 10.1016/j.jcp.2007.02.018. |
[6] |
W. Bao and X. Zhao,
A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime, Numer. Math., 135 (2017), 833-873.
doi: 10.1007/s00211-016-0818-x. |
[7] |
P. Biler,
Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[8] |
Y. Cai and Y. Yuan,
Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp., 87 (2018), 1191-1225.
doi: 10.1090/mcom/3269. |
[9] |
A. Darwish and E. G. Fan,
A series of new explicit exact solutions for the coupled Klein-Gordon-Schrödinger equations, Chaos Solitons Fractals, 20 (2004), 609-617.
doi: 10.1016/S0960-0779(03)00419-3. |
[10] |
M. Dehghan and A. Taleei,
Numerical solution of the Yukawa-coupled Klein-Gordon-Schrödinger equations via a Chebyshev pseudospectral multidomain method, Appl. Math. Model., 36 (2012), 2340-2349.
doi: 10.1016/j.apm.2011.08.030. |
[11] |
J. M. Dixon, J. A. Tuszynski and P. J. Clarkson, From Nonlinearity To Coherence: Universal Features Of Nonlinear Behavior In Many-body Physics, Cambridge University Press, Cambridge, 1997. Google Scholar |
[12] |
I. Fukuda and M. Tsutsumi,
On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405.
doi: 10.3792/pja/1195518563. |
[13] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[14] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations Ⅲ, Math. Japan, 24 (1979), 307-321.
|
[15] |
B. Guo,
The global solutions of some problems for a system of equations of Schrödinger-Klein-Gordon field, Sci. China Ser. A, 25 (1982), 897-910.
|
[16] |
B. Guo and Y. Li,
Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differ. Eq., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[17] |
B. Guo and C. Miao,
Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrödinger equations, Sci. China Ser. A, 38 (1995), 1444-1456.
|
[18] |
A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, New York, 1995. Google Scholar |
[19] |
N. Hayashi and W. V. Wahl,
On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[20] |
S. Herr and K. Schratz,
Trigonometric time integrators for the Zakharov system, IMA J. Numer. Anal., 37 (2017), 2042-2066.
doi: 10.1093/imanum/drw059. |
[21] |
F. T. Hioe,
Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrödinger equations, J. Phys. A: Math. Gen., 36 (2003), 7307-7330.
doi: 10.1088/0305-4470/36/26/307. |
[22] |
J. Hong, S. Jiang and C. Li,
Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations, J. Comput. Phys., 228 (2009), 3517-3532.
doi: 10.1016/j.jcp.2009.02.006. |
[23] |
L. Kong, R. Liu and Z. Xu,
Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method, Appl. Math. Comput., 181 (2006), 342-350.
doi: 10.1016/j.amc.2006.01.044. |
[24] |
L. Kong, J Zhang, Y. Cao, Y. Duan and H. Huang,
Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations, Comput. Phys. Comm., 181 (2010), 1369-1377.
doi: 10.1016/j.cpc.2010.04.003. |
[25] |
Y. Li and B. Guo,
Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265.
doi: 10.1016/S0022-247X(03)00152-5. |
[26] |
K. Lu and B. Wang,
Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Eq., 170 (2001), 281-316.
doi: 10.1006/jdeq.2000.3827. |
[27] |
V. G. Makhankov,
Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., 35 (1978), 1-128.
doi: 10.1016/0370-1573(78)90074-1. |
[28] |
T. Ozawa and Y. Tsutsumi,
The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Proc. Japan Acad. A, 67 (1991), 113-116.
doi: 10.3792/pjaa.67.113. |
[29] |
T. Ozawa and Y. Tsutsumi,
Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305.
|
[30] |
X. Pan and L. Zhang,
High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein-Gordon equation, Nonlinear Anal., 92 (2013), 108-118.
doi: 10.1016/j.na.2013.07.003. |
[31] |
V. Petviashvili and O. Pokhotelov,
Solitary Waves in Plasmas and in The Atmosphere, Gordon and Breach, Philadelphia, 1992. |
[32] |
S. H. Schochet and M. I. Weinstein,
The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys., 106 (1986), 569-580.
doi: 10.1007/BF01463396. |
[33] |
Y. R. Shen, Principles of Nonlinear Optics, Wiley, New York, 1984. Google Scholar |
[34] |
C. Su and W. Yi, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer. Anal., (2017).
doi: 10.1093/imanum/drx044. |
[35] |
V. Thomée,
Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997.
doi: 10.1007/3-540-33122-0. |
[36] |
M. Wang and Y. Zhou,
The periodic wave solutions for the Klein-Gordon-Schrödinger equations, Phys. Lett. A, 318 (2003), 84-92.
doi: 10.1016/j.physleta.2003.07.026. |
[37] |
S. Wang and L. Zhang,
A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 203 (2008), 799-812.
doi: 10.1016/j.amc.2008.05.089. |
[38] |
T. Wang,
Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, J. Math. Anal. Appl., 412 (2014), 155-167.
doi: 10.1016/j.jmaa.2013.10.038. |
[39] |
X. Xiang,
Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field, J. Comput. Appl. Math., 21 (1988), 161-171.
doi: 10.1016/0377-0427(88)90265-8. |
[40] |
H. Yukawa, On the interaction of elementary particles, Ⅰ, Proc. Phys. Math. Soc. Japan, 17 (1935), 48-57. Google Scholar |
[41] |
L. Zhang,
Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space, Appl. Math. Comput., 163 (2005), 343-355.
doi: 10.1016/j.amc.2004.02.010. |
show all references
References:
[1] |
W. Bao and Y. Cai,
Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.
doi: 10.1090/S0025-5718-2012-02617-2. |
[2] |
W. Bao, X. Dong and S. Wang,
Singular limits of Klein-Gordon-Schrödinger equations to Schrödinger-Yukawa equations, Multiscale Model. Simul., 8 (2010), 1742-1769.
doi: 10.1137/100790586. |
[3] |
W. Bao and C. Su,
Uniform error bounds of a finite difference method for the Zakharov system in the subsnic limit regime via an asymptotic consistent formulation, Multiscale Model. Simul., 15 (2017), 977-1002.
doi: 10.1137/16M1078112. |
[4] |
W. Bao and C. Su, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, Math. Comp, (2017).
doi: 10.1090/mcom/3278. |
[5] |
W. Bao and L. Yang,
Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations, J. Comput. Phys., 225 (2007), 1863-1893.
doi: 10.1016/j.jcp.2007.02.018. |
[6] |
W. Bao and X. Zhao,
A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime, Numer. Math., 135 (2017), 833-873.
doi: 10.1007/s00211-016-0818-x. |
[7] |
P. Biler,
Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[8] |
Y. Cai and Y. Yuan,
Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp., 87 (2018), 1191-1225.
doi: 10.1090/mcom/3269. |
[9] |
A. Darwish and E. G. Fan,
A series of new explicit exact solutions for the coupled Klein-Gordon-Schrödinger equations, Chaos Solitons Fractals, 20 (2004), 609-617.
doi: 10.1016/S0960-0779(03)00419-3. |
[10] |
M. Dehghan and A. Taleei,
Numerical solution of the Yukawa-coupled Klein-Gordon-Schrödinger equations via a Chebyshev pseudospectral multidomain method, Appl. Math. Model., 36 (2012), 2340-2349.
doi: 10.1016/j.apm.2011.08.030. |
[11] |
J. M. Dixon, J. A. Tuszynski and P. J. Clarkson, From Nonlinearity To Coherence: Universal Features Of Nonlinear Behavior In Many-body Physics, Cambridge University Press, Cambridge, 1997. Google Scholar |
[12] |
I. Fukuda and M. Tsutsumi,
On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405.
doi: 10.3792/pja/1195518563. |
[13] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[14] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations Ⅲ, Math. Japan, 24 (1979), 307-321.
|
[15] |
B. Guo,
The global solutions of some problems for a system of equations of Schrödinger-Klein-Gordon field, Sci. China Ser. A, 25 (1982), 897-910.
|
[16] |
B. Guo and Y. Li,
Attractor for dissipative Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differ. Eq., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[17] |
B. Guo and C. Miao,
Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrödinger equations, Sci. China Ser. A, 38 (1995), 1444-1456.
|
[18] |
A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, New York, 1995. Google Scholar |
[19] |
N. Hayashi and W. V. Wahl,
On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[20] |
S. Herr and K. Schratz,
Trigonometric time integrators for the Zakharov system, IMA J. Numer. Anal., 37 (2017), 2042-2066.
doi: 10.1093/imanum/drw059. |
[21] |
F. T. Hioe,
Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schrödinger equations, J. Phys. A: Math. Gen., 36 (2003), 7307-7330.
doi: 10.1088/0305-4470/36/26/307. |
[22] |
J. Hong, S. Jiang and C. Li,
Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations, J. Comput. Phys., 228 (2009), 3517-3532.
doi: 10.1016/j.jcp.2009.02.006. |
[23] |
L. Kong, R. Liu and Z. Xu,
Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method, Appl. Math. Comput., 181 (2006), 342-350.
doi: 10.1016/j.amc.2006.01.044. |
[24] |
L. Kong, J Zhang, Y. Cao, Y. Duan and H. Huang,
Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations, Comput. Phys. Comm., 181 (2010), 1369-1377.
doi: 10.1016/j.cpc.2010.04.003. |
[25] |
Y. Li and B. Guo,
Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265.
doi: 10.1016/S0022-247X(03)00152-5. |
[26] |
K. Lu and B. Wang,
Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Eq., 170 (2001), 281-316.
doi: 10.1006/jdeq.2000.3827. |
[27] |
V. G. Makhankov,
Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., 35 (1978), 1-128.
doi: 10.1016/0370-1573(78)90074-1. |
[28] |
T. Ozawa and Y. Tsutsumi,
The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Proc. Japan Acad. A, 67 (1991), 113-116.
doi: 10.3792/pjaa.67.113. |
[29] |
T. Ozawa and Y. Tsutsumi,
Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305.
|
[30] |
X. Pan and L. Zhang,
High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein-Gordon equation, Nonlinear Anal., 92 (2013), 108-118.
doi: 10.1016/j.na.2013.07.003. |
[31] |
V. Petviashvili and O. Pokhotelov,
Solitary Waves in Plasmas and in The Atmosphere, Gordon and Breach, Philadelphia, 1992. |
[32] |
S. H. Schochet and M. I. Weinstein,
The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys., 106 (1986), 569-580.
doi: 10.1007/BF01463396. |
[33] |
Y. R. Shen, Principles of Nonlinear Optics, Wiley, New York, 1984. Google Scholar |
[34] |
C. Su and W. Yi, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer. Anal., (2017).
doi: 10.1093/imanum/drx044. |
[35] |
V. Thomée,
Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997.
doi: 10.1007/3-540-33122-0. |
[36] |
M. Wang and Y. Zhou,
The periodic wave solutions for the Klein-Gordon-Schrödinger equations, Phys. Lett. A, 318 (2003), 84-92.
doi: 10.1016/j.physleta.2003.07.026. |
[37] |
S. Wang and L. Zhang,
A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 203 (2008), 799-812.
doi: 10.1016/j.amc.2008.05.089. |
[38] |
T. Wang,
Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, J. Math. Anal. Appl., 412 (2014), 155-167.
doi: 10.1016/j.jmaa.2013.10.038. |
[39] |
X. Xiang,
Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field, J. Comput. Appl. Math., 21 (1988), 161-171.
doi: 10.1016/0377-0427(88)90265-8. |
[40] |
H. Yukawa, On the interaction of elementary particles, Ⅰ, Proc. Phys. Math. Soc. Japan, 17 (1935), 48-57. Google Scholar |
[41] |
L. Zhang,
Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space, Appl. Math. Comput., 163 (2005), 343-355.
doi: 10.1016/j.amc.2004.02.010. |






2.15E-2 | 5.48E-3 | 1.39E-3 | 3.49E-4 | 8.75E-5 | 2.19E-5 | 5.48E-6 | 1.38E-6 | |
rate | - | 1.97 | 1.98 | 1.99 | 2.00 | 2.00 | 2.00 | 1.99 |
4.72E-2 | 1.57E-2 | 4.19E-3 | 1.07E-3 | 2.68E-4 | 6.72E-5 | 1.68E-5 | 4.21E-6 | |
rate | - | 1.59 | 1.91 | 1.97 | 1.99 | 2.00 | 2.00 | 2.00 |
2.38E-2 | 1.36E-2 | 4.60E-3 | 1.24E-3 | 3.15E-4 | 7.92E-5 | 1.98E-5 | 4.96E-6 | |
rate | - | 0.81 | 1.56 | 1.89 | 1.97 | 1.99 | 2.00 | 2.00 |
2.19E-2 | 8.12E-3 | 4.79E-3 | 2.16E-3 | 6.21E-4 | 1.59E-4 | 3.99E-5 | 1.00E-5 | |
rate | - | 1.43 | 0.76 | 1.15 | 1.80 | 1.97 | 1.99 | 2.00 |
2.45E-2 | 5.22E-3 | 1.83E-3 | 1.37E-3 | 9.03E-4 | 3.11E-4 | 8.20E-5 | 2.07E-5 | |
rate | - | 2.23 | 1.51 | 0.42 | 0.60 | 1.54 | 1.92 | 1.99 |
2.57E-2 | 7.93E-3 | 1.70E-3 | 4.97E-4 | 3.25E-4 | 3.06E-4 | 1.44E-4 | 4.16E-5 | |
rate | - | 1.70 | 2.22 | 1.77 | 0.61 | 0.09 | 1.09 | 1.79 |
2.61E-2 | 6.58E-3 | 1.90E-3 | 4.20E-4 | 1.25E-4 | 7.70E-5 | 8.50E-5 | 5.75E-5 | |
rate | - | 1.99 | 1.79 | 2.18 | 1.75 | 0.69 | -0.14 | 0.57 |
2.62E-2 | 6.26E-3 | 1.75E-3 | 3.85E-4 | 1.05E-4 | 3.12E-5 | 1.97E-5 | 1.94E-5 | |
rate | - | 2.07 | 1.84 | 2.19 | 1.87 | 1.75 | 0.67 | 0.02 |
2.62E-2 | 6.21E-3 | 1.54E-3 | 5.00E-4 | 1.06E-4 | 2.63E-5 | 7.80E-6 | 4.92E-6 | |
rate | - | 2.08 | 2.01 | 1.62 | 2.24 | 2.01 | 1.75 | 0.67 |
2.62E-2 | 6.19E-3 | 1.50E-3 | 3.97E-4 | 1.17E-4 | 2.62E-5 | 6.58E-6 | 1.95E-6 | |
rate | - | 2.08 | 2.04 | 1.92 | 1.76 | 2.16 | 2.00 | 1.75 |
2.15E-2 | 5.48E-3 | 1.39E-3 | 3.49E-4 | 8.75E-5 | 2.19E-5 | 5.48E-6 | 1.38E-6 | |
rate | - | 1.97 | 1.98 | 1.99 | 2.00 | 2.00 | 2.00 | 1.99 |
4.72E-2 | 1.57E-2 | 4.19E-3 | 1.07E-3 | 2.68E-4 | 6.72E-5 | 1.68E-5 | 4.21E-6 | |
rate | - | 1.59 | 1.91 | 1.97 | 1.99 | 2.00 | 2.00 | 2.00 |
2.38E-2 | 1.36E-2 | 4.60E-3 | 1.24E-3 | 3.15E-4 | 7.92E-5 | 1.98E-5 | 4.96E-6 | |
rate | - | 0.81 | 1.56 | 1.89 | 1.97 | 1.99 | 2.00 | 2.00 |
2.19E-2 | 8.12E-3 | 4.79E-3 | 2.16E-3 | 6.21E-4 | 1.59E-4 | 3.99E-5 | 1.00E-5 | |
rate | - | 1.43 | 0.76 | 1.15 | 1.80 | 1.97 | 1.99 | 2.00 |
2.45E-2 | 5.22E-3 | 1.83E-3 | 1.37E-3 | 9.03E-4 | 3.11E-4 | 8.20E-5 | 2.07E-5 | |
rate | - | 2.23 | 1.51 | 0.42 | 0.60 | 1.54 | 1.92 | 1.99 |
2.57E-2 | 7.93E-3 | 1.70E-3 | 4.97E-4 | 3.25E-4 | 3.06E-4 | 1.44E-4 | 4.16E-5 | |
rate | - | 1.70 | 2.22 | 1.77 | 0.61 | 0.09 | 1.09 | 1.79 |
2.61E-2 | 6.58E-3 | 1.90E-3 | 4.20E-4 | 1.25E-4 | 7.70E-5 | 8.50E-5 | 5.75E-5 | |
rate | - | 1.99 | 1.79 | 2.18 | 1.75 | 0.69 | -0.14 | 0.57 |
2.62E-2 | 6.26E-3 | 1.75E-3 | 3.85E-4 | 1.05E-4 | 3.12E-5 | 1.97E-5 | 1.94E-5 | |
rate | - | 2.07 | 1.84 | 2.19 | 1.87 | 1.75 | 0.67 | 0.02 |
2.62E-2 | 6.21E-3 | 1.54E-3 | 5.00E-4 | 1.06E-4 | 2.63E-5 | 7.80E-6 | 4.92E-6 | |
rate | - | 2.08 | 2.01 | 1.62 | 2.24 | 2.01 | 1.75 | 0.67 |
2.62E-2 | 6.19E-3 | 1.50E-3 | 3.97E-4 | 1.17E-4 | 2.62E-5 | 6.58E-6 | 1.95E-6 | |
rate | - | 2.08 | 2.04 | 1.92 | 1.76 | 2.16 | 2.00 | 1.75 |
1.85E-1 | 7.00E-2 | 2.19E-2 | 5.89E-3 | 1.50E-3 | 3.76E-4 | 9.41E-5 | 2.36E-5 | |
rate | - | 1.40 | 1.67 | 1.90 | 1.98 | 1.99 | 2.00 | 2.00 |
3.64E-1 | 1.99E-1 | 6.66E-2 | 1.75E-2 | 4.40E-3 | 1.10E-3 | 2.76E-4 | 6.90E-5 | |
rate | - | 0.87 | 1.58 | 1.93 | 1.99 | 2.00 | 2.00 | 2.00 |
1.31E-1 | 5.94E-2 | 3.36E-2 | 1.62E-2 | 4.95E-3 | 1.28E-3 | 3.23E-4 | 8.09E-5 | |
rate | - | 1.14 | 0.82 | 1.05 | 1.71 | 1.95 | 1.99 | 2.00 |
1.46E-1 | 4.21E-2 | 1.12E-2 | 2.91E-3 | 7.34E-4 | 1.84E-4 | 4.59E-5 | 1.15E-5 | |
rate | - | 1.79 | 1.91 | 1.95 | 1.99 | 2.00 | 2.00 | 2.00 |
1.05E-1 | 4.15E-2 | 1.09E-2 | 2.62E-3 | 6.38E-4 | 1.57E-4 | 3.90E-5 | 9.75E-6 | |
rate | - | 1.35 | 1.93 | 2.06 | 2.04 | 2.02 | 2.01 | 2.00 |
1.00E-1 | 3.14E-2 | 9.05E-3 | 3.02E-3 | 6.81E-4 | 1.60E-4 | 3.86E-5 | 9.53E-6 | |
rate | - | 1.67 | 1.79 | 1.58 | 2.15 | 2.09 | 2.05 | 2.02 |
1.01E-1 | 3.30E-2 | 8.75E-3 | 2.88E-3 | 9.29E-4 | 1.93E-4 | 4.23E-5 | 9.88E-6 | |
rate | - | 1.61 | 1.92 | 1.61 | 1.63 | 2.27 | 2.19 | 2.10 |
1.00E-1 | 3.30E-2 | 9.80E-3 | 2.59E-3 | 1.16E-3 | 3.30E-4 | 6.16E-5 | 1.21E-5 | |
rate | - | 1.61 | 1.75 | 1.92 | 1.17 | 1.81 | 2.42 | 2.35 |
1.01E-1 | 3.31E-2 | 9.84E-3 | 3.05E-3 | 8.71E-4 | 5.22E-4 | 1.36E-4 | 2.31E-5 | |
rate | - | 1.61 | 1.75 | 1.69 | 1.81 | 0.74 | 1.94 | 2.55 |
1.01E-1 | 3.34E-2 | 9.96E-3 | 3.11E-3 | 1.08E-3 | 3.41E-4 | 2.50E-4 | 6.16E-5 | |
rate | - | 1.59 | 1.75 | 1.68 | 1.52 | 1.67 | 0.45 | 2.02 |
1.71E-2 | 4.30E-3 | 1.09E-3 | 2.74E-4 | 6.88E-5 | 1.72E-5 | 4.31E-6 | 1.08E-6 | |
rate | - | 1.99 | 1.98 | 1.99 | 2.00 | 2.00 | 2.00 | 1.99 |
2.76E-2 | 9.96E-3 | 2.63E-3 | 6.69E-4 | 1.68E-4 | 4.21E-5 | 1.05E-5 | 2.64E-6 | |
rate | - | 1.47 | 1.92 | 1.97 | 1.99 | 2.00 | 2.00 | 2.00 |
9.75E-3 | 8.65E-3 | 3.62E-3 | 1.05E-3 | 2.71E-4 | 6.83E-5 | 1.71E-5 | 4.28E-6 | |
rate | - | 0.17 | 1.26 | 1.79 | 1.95 | 1.99 | 2.00 | 2.00 |
6.62E-3 | 2.61E-3 | 2.72E-3 | 1.58E-3 | 4.52E-4 | 1.15E-4 | 2.90E-5 | 7.25E-6 | |
rate | - | 1.34 | -0.06 | 0.78 | 1.81 | 1.97 | 1.99 | 2.00 |
3.24E-3 | 1.64E-3 | 7.12E-4 | 6.54E-4 | 7.69E-4 | 2.66E-4 | 6.90E-5 | 1.73E-5 | |
rate | - | 0.98 | 1.20 | 0.12 | -0.23 | 1.53 | 1.94 | 1.99 |
3.47E-3 | 1.17E-3 | 6.10E-4 | 2.23E-4 | 1.75E-4 | 1.47E-4 | 1.38E-4 | 3.84E-5 | |
rate | - | 1.57 | 0.94 | 1.45 | 0.35 | 0.26 | 0.09 | 1.84 |
3.51E-3 | 1.12E-3 | 3.07E-4 | 2.75E-4 | 8.62E-5 | 4.14E-5 | 4.63E-5 | 5.33E-5 | |
rate | - | 1.65 | 1.86 | 0.16 | 1.67 | 1.06 | -0.16 | -0.20 |
3.53E-3 | 1.01E-3 | 3.85E-4 | 1.19E-4 | 1.32E-4 | 3.88E-5 | 1.21E-5 | 1.19E-5 | |
rate | - | 1.80 | 1.39 | 1.70 | -0.15 | 1.77 | 1.69 | 0.02 |
3.56E-3 | 9.95E-4 | 3.38E-4 | 1.45E-4 | 5.13E-5 | 6.48E-5 | 1.86E-5 | 3.96E-6 | |
rate | - | 1.84 | 1.56 | 1.22 | 1.50 | -0.34 | 1.80 | 2.23 |
3.57E-3 | 1.01E-3 | 3.29E-4 | 1.34E-4 | 5.64E-5 | 2.39E-5 | 3.22E-5 | 9.21E-6 | |
rate | - | 1.82 | 1.62 | 1.30 | 1.24 | 1.24 | -0.43 | 1.81 |
1.85E-1 | 7.00E-2 | 2.19E-2 | 5.89E-3 | 1.50E-3 | 3.76E-4 | 9.41E-5 | 2.36E-5 | |
rate | - | 1.40 | 1.67 | 1.90 | 1.98 | 1.99 | 2.00 | 2.00 |
3.64E-1 | 1.99E-1 | 6.66E-2 | 1.75E-2 | 4.40E-3 | 1.10E-3 | 2.76E-4 | 6.90E-5 | |
rate | - | 0.87 | 1.58 | 1.93 | 1.99 | 2.00 | 2.00 | 2.00 |
1.31E-1 | 5.94E-2 | 3.36E-2 | 1.62E-2 | 4.95E-3 | 1.28E-3 | 3.23E-4 | 8.09E-5 | |
rate | - | 1.14 | 0.82 | 1.05 | 1.71 | 1.95 | 1.99 | 2.00 |
1.46E-1 | 4.21E-2 | 1.12E-2 | 2.91E-3 | 7.34E-4 | 1.84E-4 | 4.59E-5 | 1.15E-5 | |
rate | - | 1.79 | 1.91 | 1.95 | 1.99 | 2.00 | 2.00 | 2.00 |
1.05E-1 | 4.15E-2 | 1.09E-2 | 2.62E-3 | 6.38E-4 | 1.57E-4 | 3.90E-5 | 9.75E-6 | |
rate | - | 1.35 | 1.93 | 2.06 | 2.04 | 2.02 | 2.01 | 2.00 |
1.00E-1 | 3.14E-2 | 9.05E-3 | 3.02E-3 | 6.81E-4 | 1.60E-4 | 3.86E-5 | 9.53E-6 | |
rate | - | 1.67 | 1.79 | 1.58 | 2.15 | 2.09 | 2.05 | 2.02 |
1.01E-1 | 3.30E-2 | 8.75E-3 | 2.88E-3 | 9.29E-4 | 1.93E-4 | 4.23E-5 | 9.88E-6 | |
rate | - | 1.61 | 1.92 | 1.61 | 1.63 | 2.27 | 2.19 | 2.10 |
1.00E-1 | 3.30E-2 | 9.80E-3 | 2.59E-3 | 1.16E-3 | 3.30E-4 | 6.16E-5 | 1.21E-5 | |
rate | - | 1.61 | 1.75 | 1.92 | 1.17 | 1.81 | 2.42 | 2.35 |
1.01E-1 | 3.31E-2 | 9.84E-3 | 3.05E-3 | 8.71E-4 | 5.22E-4 | 1.36E-4 | 2.31E-5 | |
rate | - | 1.61 | 1.75 | 1.69 | 1.81 | 0.74 | 1.94 | 2.55 |
1.01E-1 | 3.34E-2 | 9.96E-3 | 3.11E-3 | 1.08E-3 | 3.41E-4 | 2.50E-4 | 6.16E-5 | |
rate | - | 1.59 | 1.75 | 1.68 | 1.52 | 1.67 | 0.45 | 2.02 |
1.71E-2 | 4.30E-3 | 1.09E-3 | 2.74E-4 | 6.88E-5 | 1.72E-5 | 4.31E-6 | 1.08E-6 | |
rate | - | 1.99 | 1.98 | 1.99 | 2.00 | 2.00 | 2.00 | 1.99 |
2.76E-2 | 9.96E-3 | 2.63E-3 | 6.69E-4 | 1.68E-4 | 4.21E-5 | 1.05E-5 | 2.64E-6 | |
rate | - | 1.47 | 1.92 | 1.97 | 1.99 | 2.00 | 2.00 | 2.00 |
9.75E-3 | 8.65E-3 | 3.62E-3 | 1.05E-3 | 2.71E-4 | 6.83E-5 | 1.71E-5 | 4.28E-6 | |
rate | - | 0.17 | 1.26 | 1.79 | 1.95 | 1.99 | 2.00 | 2.00 |
6.62E-3 | 2.61E-3 | 2.72E-3 | 1.58E-3 | 4.52E-4 | 1.15E-4 | 2.90E-5 | 7.25E-6 | |
rate | - | 1.34 | -0.06 | 0.78 | 1.81 | 1.97 | 1.99 | 2.00 |
3.24E-3 | 1.64E-3 | 7.12E-4 | 6.54E-4 | 7.69E-4 | 2.66E-4 | 6.90E-5 | 1.73E-5 | |
rate | - | 0.98 | 1.20 | 0.12 | -0.23 | 1.53 | 1.94 | 1.99 |
3.47E-3 | 1.17E-3 | 6.10E-4 | 2.23E-4 | 1.75E-4 | 1.47E-4 | 1.38E-4 | 3.84E-5 | |
rate | - | 1.57 | 0.94 | 1.45 | 0.35 | 0.26 | 0.09 | 1.84 |
3.51E-3 | 1.12E-3 | 3.07E-4 | 2.75E-4 | 8.62E-5 | 4.14E-5 | 4.63E-5 | 5.33E-5 | |
rate | - | 1.65 | 1.86 | 0.16 | 1.67 | 1.06 | -0.16 | -0.20 |
3.53E-3 | 1.01E-3 | 3.85E-4 | 1.19E-4 | 1.32E-4 | 3.88E-5 | 1.21E-5 | 1.19E-5 | |
rate | - | 1.80 | 1.39 | 1.70 | -0.15 | 1.77 | 1.69 | 0.02 |
3.56E-3 | 9.95E-4 | 3.38E-4 | 1.45E-4 | 5.13E-5 | 6.48E-5 | 1.86E-5 | 3.96E-6 | |
rate | - | 1.84 | 1.56 | 1.22 | 1.50 | -0.34 | 1.80 | 2.23 |
3.57E-3 | 1.01E-3 | 3.29E-4 | 1.34E-4 | 5.64E-5 | 2.39E-5 | 3.22E-5 | 9.21E-6 | |
rate | - | 1.82 | 1.62 | 1.30 | 1.24 | 1.24 | -0.43 | 1.81 |
Case Ⅰ | ε0 = 1/2 | ε0/22 | ε0/24 | ε0/26 | ||
τ = O(ε3/2) | τ0 = 0.1 | τ0/23 | τ0/26 | τ0/29 | ||
eφε(1) | 2.15E-2 | 1.24E-3 | 8.20E-5 | 5.18E-6 | ||
rate in time | - | 4.12/3 | 3.92/3 | 3.98/3 | ||
Case Ⅱ | ε0 = 1/22 | ε0/2 | ε0/22 | ε0/23 | ε0/24 | ε0/25 |
τ = O(ε) | τ0 = 0.1/22 | τ0/2 | τ0/22 | τ0/23 | τ0/24 | τ0/25 |
eφε(1) | 2.63E-3 | 1.05E-3 | 4.52E-4 | 2.66E-4 | 1.38E-4 | 5.33E-5 |
rate in time | - | 1.32 | 1.21 | 0.76 | 0.95 | 1.37 |
Case Ⅰ | ε0 = 1/2 | ε0/22 | ε0/24 | ε0/26 | ||
τ = O(ε3/2) | τ0 = 0.1 | τ0/23 | τ0/26 | τ0/29 | ||
eφε(1) | 2.15E-2 | 1.24E-3 | 8.20E-5 | 5.18E-6 | ||
rate in time | - | 4.12/3 | 3.92/3 | 3.98/3 | ||
Case Ⅱ | ε0 = 1/22 | ε0/2 | ε0/22 | ε0/23 | ε0/24 | ε0/25 |
τ = O(ε) | τ0 = 0.1/22 | τ0/2 | τ0/22 | τ0/23 | τ0/24 | τ0/25 |
eφε(1) | 2.63E-3 | 1.05E-3 | 4.52E-4 | 2.66E-4 | 1.38E-4 | 5.33E-5 |
rate in time | - | 1.32 | 1.21 | 0.76 | 0.95 | 1.37 |
[1] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[2] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[3] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[4] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[5] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[6] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[7] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[8] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[9] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[10] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[11] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[12] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[13] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[14] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[15] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[16] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[17] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[18] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[19] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[20] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]