The original Keller-Segel system proposed in [
Citation: |
Figure 2.
Numerical simulation of the time evolution of boundary layer solutions of (4) with
[1] |
J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.
![]() |
[2] |
W. Alt and D. A. Lauffenburger, Transient behavior of a chemotaxis system modeling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722.
doi: 10.1007/BF00275511.![]() ![]() ![]() |
[3] |
D. Balding and D. L. S. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53-73.
doi: 10.1016/S0022-5193(85)80255-1.![]() ![]() |
[4] |
A. Bressan,
Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford University Press, 2000.
![]() ![]() |
[5] |
M. Chae, K. Choi, K. Kang and J. Lee, Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain, Journal of Differential Equations, 265 (2018), 237-279, arXiv: 1609.00821v1.
doi: 10.1016/j.jde.2018.02.034.![]() ![]() |
[6] |
M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med., 10 (1993), 149-168.
![]() |
[7] |
L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris, 2 (2003), 141-146.
doi: 10.1016/S1631-073X(02)00008-0.![]() ![]() ![]() |
[8] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x.![]() ![]() ![]() |
[9] |
C. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, 4th Edition, Spring-Verlag, 2016.
doi: 10.1007/978-3-662-49451-6.![]() ![]() ![]() |
[10] |
F. W. Dahlquist, P. Lovely and D. E. Jr Koshland, Qualitative analysis of bacterial migration in chemotaxis, Nature, New Biol., 236 (1972), 120-123.
![]() |
[11] |
P. N. Davis, P. van Heijster and R. Marangell, Absolute instabilities of traveling wave solutions in a Keller-Segel model, arXiv: 1608.05480v2.
![]() |
[12] |
C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.
doi: 10.1016/j.jde.2014.05.014.![]() ![]() ![]() |
[13] |
H. Frid and V. Shelukhin, Boundary layers for the Navier-Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309-330.
doi: 10.1007/s002200050760.![]() ![]() ![]() |
[14] |
A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino, Percolation, morphogenesis, and Burgers dynamics in blood vessels formation, Phys. Rev. Lett., 90 (2003), 118101.
doi: 10.1103/PhysRevLett.90.118101.![]() ![]() |
[15] |
C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew Math. Phys., 63 (2012), 825-834.
doi: 10.1007/s00033-012-0193-0.![]() ![]() ![]() |
[16] |
H. Höfer, J. A. Sherratt and P. K. Maini, Cellular pattern formation during Dictyostelium aggregation, Physica D., 85 (1995), 425-444.
![]() |
[17] |
D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.
doi: 10.1006/jdeq.1995.1111.![]() ![]() ![]() |
[18] |
Q. Q. Hou, Z. A. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035-5070.
doi: 10.1016/j.jde.2016.07.018.![]() ![]() ![]() |
[19] |
S. Jiang and J. W. Zhang, On the non-resistive limit and the magnetic boundary-layer for one-dimensional compressible magnetohydrodynamics, Nonlinearity, 30 (2017), 3587-3612.
![]() ![]() |
[20] |
S. Jiang and J. W. Zhang, Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry, SIAM J. Math. Anal., 41 (2009), 237-268.
doi: 10.1137/07070005X.![]() ![]() ![]() |
[21] |
H. Y. Jin, J. Y. Li and Z. A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.
doi: 10.1016/j.jde.2013.04.002.![]() ![]() ![]() |
[22] |
Y. V. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophysical J., 96 (2009), 2439-2448.
doi: 10.1016/j.bpj.2008.10.027.![]() ![]() |
[23] |
E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
[24] |
E. F. Keller and G. M. Odell, Necessary and sufficient conditions for chemotactic bands, Math. Biosci., 27 (1976), 309-317.
doi: 10.1016/0025-5564(75)90109-1.![]() ![]() ![]() |
[25] |
E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
[26] |
H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.
doi: 10.1137/S0036139995291106.![]() ![]() ![]() |
[27] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis, Math. Biosci., 168 (2000), 77-115.
doi: 10.1016/S0025-5564(00)00034-1.![]() ![]() ![]() |
[28] |
D. Li, R. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 7 (2015), 2181-2210.
doi: 10.1088/0951-7715/28/7/2181.![]() ![]() ![]() |
[29] |
H. Li and K. Zhao, Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302-338.
doi: 10.1016/j.jde.2014.09.014.![]() ![]() ![]() |
[30] |
J. Li, T. Li and Z. A. Wang, Stability of traveling waves of the keller-segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.
doi: 10.1142/S0218202514500389.![]() ![]() ![]() |
[31] |
T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.
doi: 10.1137/110829453.![]() ![]() ![]() |
[32] |
T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.
doi: 10.1137/09075161X.![]() ![]() ![]() |
[33] |
T. Li and Z. A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.
doi: 10.1142/S0218202510004830.![]() ![]() ![]() |
[34] |
T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.
doi: 10.1016/j.jde.2010.09.020.![]() ![]() ![]() |
[35] |
T. Li and Z. A. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.
doi: 10.1016/j.mbs.2012.07.003.![]() ![]() ![]() |
[36] |
P. L. Lions,
Mathematical Topics in Fluid Mechanics. Vol. Ⅱ, Compressible Models, Clarendon Press, 1998.
![]() ![]() |
[37] |
V. Martinez, Z. A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology,
Indiana Univ. Math. J., to appear.
![]() |
[38] |
J. D. Murray,
Mathematical Biology Ⅰ: An Introduction, 3rd edition, Springer, Berlin, 2002.
![]() ![]() |
[39] |
T. Nagai and T. Ikeda, Traveling waves in a chemotactic model, J. Math. Biol., 30 (1991), 169-184.
doi: 10.1007/BF00160334.![]() ![]() ![]() |
[40] |
R. Nossal, Boundary movement of chemotactic bacterial populations, Math. Biosci., 13 (1972), 397-406.
doi: 10.1016/0025-5564(72)90058-2.![]() ![]() |
[41] |
K. J. Painter, P. K. Maini and H. G. Othmer, Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism with chemotaxis, Proc. Natl. Acad. Sci., 96 (1999), 5549-5554.
doi: 10.1073/pnas.96.10.5549.![]() ![]() |
[42] |
K. J. Painter, P. K. Maini and H. G. Othmer, A chemotactic model for the advance and retreat of the primitive streak in avian development, Bull. Math. Biol., 62 (2000), 501-525.
![]() |
[43] |
H. Y. Peng, H. Y. Wen and C. J. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew Math. Phys, 65 (2014), 1167-1188.
doi: 10.1007/s00033-013-0378-1.![]() ![]() ![]() |
[44] |
G. J. Petter, H. M. Byrne, D. L. S. McElwain and J. Norbury, A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136 (2003), 35-63.
![]() |
[45] |
X. L. Qin, T. Yang, Z. A. Yao and W. S. Zhou, Vanishing shear viscosity and boundary layer for the Navier-Stokes equations with cylindrical symmetry, Arch. Ration. Mech. Anal, 216 (2015), 1049-1086.
doi: 10.1007/s00205-014-0826-x.![]() ![]() ![]() |
[46] |
H. Schwetlick, Traveling waves for chemotaxis systems, Prof. Appl. Math. Mech., 3 (2003), 476-478.
doi: 10.1002/pamm.200310508.![]() ![]() |
[47] |
J. Smoller,
Shock Waves and Reaction-Diffusion Equations, 2nd Edition, Spring-Verlag, Berlin, 1994.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[48] |
R. Tyson, S. R. Lubkin and J. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359-375.
doi: 10.1007/s002850050153.![]() ![]() ![]() |
[49] |
Z. A. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst - B, 18 (2013), 601-641.
doi: 10.3934/dcdsb.2013.18.601.![]() ![]() ![]() |
[50] |
Z. A. Wang, Y. S. Tao and L. H. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. System - B, 18 (2013), 821-845.
![]() ![]() |
[51] |
Z. A. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.
doi: 10.1016/j.jde.2015.09.063.![]() ![]() ![]() |
[52] |
Z. A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Comm. Pure Appl. Anal., 12 (2013), 3027-3046.
doi: 10.3934/cpaa.2013.12.3027.![]() ![]() ![]() |
[53] |
M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.
doi: 10.1142/S0218202516500238.![]() ![]() ![]() |
[54] |
L. Yao, T. Zhang and C. J. Zhu, Boundary layers for compressible Navier-Stokes equations with density-dependent viscosity and cylindrical symmetry, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 677-709.
doi: 10.1016/j.anihpc.2011.04.006.![]() ![]() ![]() |