-
Previous Article
Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling
- KRM Home
- This Issue
-
Next Article
Boundary layers and stabilization of the singular Keller-Segel system
A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India |
In general, the non-conservative approximation of coagulation-fragmentation equations (CFEs) may lead to the occurrence of gelation phenomenon. In this article, it is shown that the non-conservative approximation of CFEs can also provide the existence of mass conserving solutions to CFEs for large classes of unbounded coagulation and fragmentation kernels.
References:
[1] |
R. B. Ash,
Measure, Integration and Functional Analysis, Academic Press, New York-London, 1972. |
[2] |
J. Ball and J. Carr,
The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. Stat. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961. |
[3] |
J. Banasiak and M. M. Kharroubi,
Evolutionary Equations with Applications in Natural Sciences, Springer Cham Heidelberg New York Dordrecht London, 2015.
doi: 978-3-319-11321-0;978-3-319-11322-7. |
[4] |
J. P. Bourgade and F. Filbet,
Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comp., 77 (2008), 851-882.
doi: 10.1090/S0025-5718-07-02054-6. |
[5] |
C. Dellacherie and P. A. Mayer,
Probabilitiés et Potentiel, Chapitres I à IV, Paris, 1975. |
[6] |
P. B. Dubovskii and I. W. Stewart,
Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.
doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. |
[7] |
M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations., 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[8] |
M. Escobedo, S. Mischler and B. Perthame,
Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.
doi: 10.1007/s00220-002-0680-9. |
[9] |
F. Filbet and Ph. Laurençot,
Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Archiv der Mathematik, 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9. |
[10] |
F. Filbet and Ph. Laurençot,
Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25 (2004), 2004-2028.
doi: 10.1137/S1064827503429132. |
[11] |
A. K. Giri,
On the uniqueness for coagulation and multiple fragmentation equation, Kinet. Relat. Models, 6 (2013), 589-599.
doi: 10.3934/krm.2013.6.589. |
[12] |
A. K. Giri, J. Kumar and G. Warnecke,
The continuous coagulation equation with multiple fragmentation, J. Math. Anal. Appl., 374 (2011), 71-87.
doi: 10.1016/j.jmaa.2010.08.037. |
[13] |
A. K. Giri, Ph. Laurençot and G. Warnecke,
Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021. |
[14] |
A. K. Giri and G. Warnecke,
Uniqueness for the coagulation-fragmentation equation with strong fragmentation, Z. Angew. Math. Phys., 62 (2011), 1047-1063.
doi: 10.1007/s00033-011-0129-0. |
[15] |
Ph. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[16] |
Ph. Laurençot,
The Lifshitz-Slyozov equation with encounters, Math. Models Methods Appl. Sci., 11 (2001), 731-748.
doi: 10.1142/S0218202501001070. |
[17] |
F. Leyvraz,
Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A, 16 (1983), 2861-2873.
doi: 10.1088/0305-4470/16/12/032. |
[18] |
F. Leyvraz and H. R. Tschudi,
Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030. |
[19] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[20] |
I. W. Stewart,
A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge. Philos. Soc., 107 (1990), 573-578.
doi: 10.1017/S0305004100068821. |
show all references
References:
[1] |
R. B. Ash,
Measure, Integration and Functional Analysis, Academic Press, New York-London, 1972. |
[2] |
J. Ball and J. Carr,
The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. Stat. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961. |
[3] |
J. Banasiak and M. M. Kharroubi,
Evolutionary Equations with Applications in Natural Sciences, Springer Cham Heidelberg New York Dordrecht London, 2015.
doi: 978-3-319-11321-0;978-3-319-11322-7. |
[4] |
J. P. Bourgade and F. Filbet,
Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comp., 77 (2008), 851-882.
doi: 10.1090/S0025-5718-07-02054-6. |
[5] |
C. Dellacherie and P. A. Mayer,
Probabilitiés et Potentiel, Chapitres I à IV, Paris, 1975. |
[6] |
P. B. Dubovskii and I. W. Stewart,
Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.
doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. |
[7] |
M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations., 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[8] |
M. Escobedo, S. Mischler and B. Perthame,
Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.
doi: 10.1007/s00220-002-0680-9. |
[9] |
F. Filbet and Ph. Laurençot,
Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Archiv der Mathematik, 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9. |
[10] |
F. Filbet and Ph. Laurençot,
Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25 (2004), 2004-2028.
doi: 10.1137/S1064827503429132. |
[11] |
A. K. Giri,
On the uniqueness for coagulation and multiple fragmentation equation, Kinet. Relat. Models, 6 (2013), 589-599.
doi: 10.3934/krm.2013.6.589. |
[12] |
A. K. Giri, J. Kumar and G. Warnecke,
The continuous coagulation equation with multiple fragmentation, J. Math. Anal. Appl., 374 (2011), 71-87.
doi: 10.1016/j.jmaa.2010.08.037. |
[13] |
A. K. Giri, Ph. Laurençot and G. Warnecke,
Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021. |
[14] |
A. K. Giri and G. Warnecke,
Uniqueness for the coagulation-fragmentation equation with strong fragmentation, Z. Angew. Math. Phys., 62 (2011), 1047-1063.
doi: 10.1007/s00033-011-0129-0. |
[15] |
Ph. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[16] |
Ph. Laurençot,
The Lifshitz-Slyozov equation with encounters, Math. Models Methods Appl. Sci., 11 (2001), 731-748.
doi: 10.1142/S0218202501001070. |
[17] |
F. Leyvraz,
Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A, 16 (1983), 2861-2873.
doi: 10.1088/0305-4470/16/12/032. |
[18] |
F. Leyvraz and H. R. Tschudi,
Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030. |
[19] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[20] |
I. W. Stewart,
A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge. Philos. Soc., 107 (1990), 573-578.
doi: 10.1017/S0305004100068821. |
[1] |
Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012 |
[2] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic and Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009 |
[3] |
Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589 |
[4] |
Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445 |
[5] |
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563 |
[6] |
Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic and Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014 |
[7] |
Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009 |
[8] |
Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic and Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040 |
[9] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[10] |
Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177 |
[11] |
Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541 |
[12] |
Jacek Banasiak. Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3319-3334. doi: 10.3934/dcdss.2020161 |
[13] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[14] |
Mustapha Mokhtar-Kharroubi. On spectral gaps of growth-fragmentation semigroups with mass loss or death. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1293-1327. doi: 10.3934/cpaa.2022019 |
[15] |
Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106 |
[16] |
Mihai Bostan, Claudia Negulescu. Mathematical models for strongly magnetized plasmas with mass disparate particles. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 513-544. doi: 10.3934/dcdsb.2011.15.513 |
[17] |
Luis C. García-Naranjo. Some remarks about the centre of mass of two particles in spaces of constant curvature. Journal of Geometric Mechanics, 2020, 12 (3) : 435-446. doi: 10.3934/jgm.2020020 |
[18] |
Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070 |
[19] |
Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189 |
[20] |
Gerhard Rein. Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support. Kinetic and Related Models, 2015, 8 (2) : 381-394. doi: 10.3934/krm.2015.8.381 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]