• Previous Article
    On global solutions to the Vlasov-Poisson system with radiation damping
  • KRM Home
  • This Issue
  • Next Article
    Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling
October  2018, 11(5): 1157-1181. doi: 10.3934/krm.2018045

Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

2. 

Korea Institute for Advanced Study, Hoegiro 87, Seoul 02455, Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

4. 

Center for Mathematical Sciences, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

* Corresponding author

Received  April 2017 Revised  July 2017 Published  May 2018

Fund Project: The work of S.-Y.- Ha is supported by the Samsung Science and Technology Foundation under project number SSTF-BA1401-03.

Citation: Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic and Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045
References:
[1]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Physics, 51 (2010), 103301, 17pp doi: 10.1063/1.3496895.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458.  doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177.  doi: 10.1088/0951-7715/25/4/1155.

[4]

A. BressanT.-P. Liu and T. Yang, L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal., 149 (1999), 1-22.  doi: 10.1007/s002050050165.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.

[6]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.

[7]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Methods in Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[8]

Y.-P. Choi, S.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles, Vol. I -Advances in Theory, Models, Applications (tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299–331.

[9]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Large scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.

[12]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.

[13]

S.-Y. Ha, $L_1$ stability of the Boltzmann equation for the hard-sphere model, Arch. Ration. Mech. Anal., 173 (2004), 279-296.  doi: 10.1007/s00205-004-0321-x.

[14]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831.  doi: 10.1137/140984403.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.

[16]

S.-Y. HaC. LattanzioB. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103.  doi: 10.1090/S0033-569X-2010-01200-7.

[17]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.

[20]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.

[21]

S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and L1-stability for discrete velocity Boltzmann equations, Comm. Math. Phys., 239 (2003), 65-92.  doi: 10.1007/s00220-003-0866-9.

[22]

J. Hale, Ordinary Differential Equations, Dover, 1997.

[23]

E. Justh and P. Krishnaprasad, A simple control law for UAV formation flying, Technical Report, 2002-38 (http://www.isr.umd.edu)

[24]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74.  doi: 10.1109/JPROC.2006.887295.

[25]

T.-P. Liu and T. Yang, Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math., 52 (1999), 1553-1586.  doi: 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S.

[26]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.

[27]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[28]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic theories and the Boltzmann Equation, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1048 (1984), 60–110. doi: 10.1007/BFb0071878.

[29]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems Magazine, 27 (2007), 89-105. 

[30]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. of Guidance, Control and Dynamics, 32 (2009), 527-537.  doi: 10.2514/1.36269.

[31]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.

[32]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

[33]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Physics, 51 (2010), 103301, 17pp doi: 10.1063/1.3496895.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458.  doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177.  doi: 10.1088/0951-7715/25/4/1155.

[4]

A. BressanT.-P. Liu and T. Yang, L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal., 149 (1999), 1-22.  doi: 10.1007/s002050050165.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.

[6]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.

[7]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Methods in Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[8]

Y.-P. Choi, S.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles, Vol. I -Advances in Theory, Models, Applications (tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299–331.

[9]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Large scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.

[12]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.

[13]

S.-Y. Ha, $L_1$ stability of the Boltzmann equation for the hard-sphere model, Arch. Ration. Mech. Anal., 173 (2004), 279-296.  doi: 10.1007/s00205-004-0321-x.

[14]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831.  doi: 10.1137/140984403.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.

[16]

S.-Y. HaC. LattanzioB. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103.  doi: 10.1090/S0033-569X-2010-01200-7.

[17]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.

[20]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.

[21]

S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and L1-stability for discrete velocity Boltzmann equations, Comm. Math. Phys., 239 (2003), 65-92.  doi: 10.1007/s00220-003-0866-9.

[22]

J. Hale, Ordinary Differential Equations, Dover, 1997.

[23]

E. Justh and P. Krishnaprasad, A simple control law for UAV formation flying, Technical Report, 2002-38 (http://www.isr.umd.edu)

[24]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74.  doi: 10.1109/JPROC.2006.887295.

[25]

T.-P. Liu and T. Yang, Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math., 52 (1999), 1553-1586.  doi: 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S.

[26]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.

[27]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[28]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic theories and the Boltzmann Equation, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1048 (1984), 60–110. doi: 10.1007/BFb0071878.

[29]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems Magazine, 27 (2007), 89-105. 

[30]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. of Guidance, Control and Dynamics, 32 (2009), 527-537.  doi: 10.2514/1.36269.

[31]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.

[32]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

[33]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

[1]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[2]

Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim. Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4209-4237. doi: 10.3934/cpaa.2021156

[3]

Jan Haskovec. Cucker-Smale model with finite speed of information propagation: well-posedness, flocking and mean-field limit. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022033

[4]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[5]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[6]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[7]

Matthew Rosenzweig. The mean-field limit of the Lieb-Liniger model. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3005-3037. doi: 10.3934/dcds.2022006

[8]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic and Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[9]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[10]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic and Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[11]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[12]

Nastassia Pouradier Duteil. Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17 (2) : 129-161. doi: 10.3934/nhm.2022001

[13]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[14]

Joachim Crevat. Mean-field limit of a spatially-extended FitzHugh-Nagumo neural network. Kinetic and Related Models, 2019, 12 (6) : 1329-1358. doi: 10.3934/krm.2019052

[15]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[16]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[17]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[18]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006

[19]

Hélène Hibon, Ying Hu, Shanjian Tang. Mean-field type quadratic BSDEs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022009

[20]

Ying Hu, Remi Moreau, Falei Wang. Quadratic mean-field reflected BSDEs. Probability, Uncertainty and Quantitative Risk, 2022, 7 (3) : 169-194. doi: 10.3934/puqr.2022012

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (528)
  • HTML views (220)
  • Cited by (12)

Other articles
by authors

[Back to Top]