[1]
|
A. Alekseenko and C. Euler, A Bhatnagar-Gross-Krook kinetic model with velocity-dependent collision frequency and corrected relaxation of moments, Continuum Mechanics and Thermodynamics, 28 (2016), 751-763.
doi: 10.1007/s00161-014-0407-0.
|
[2]
|
A. Alekseenko and E. Josyula, Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity discretization, in 28th International Symposium on Rarefied Gas Dynamics, 9-13 July 2012, Zaragoza, Spain, AIP Conference Proceedings, American Institute of Physics, 2012, 8pp.
|
[3]
|
A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, emphJournal of Computational Physics, 272 (2014), 170–188, URL http://www.sciencedirect.com/science/article/pii/S0021999114002186.
doi: 10.1016/j.jcp.2014.03.031.
|
[4]
|
L. Andallah and H. Babovsky, A discrete Boltzmann equation based on a cub-octahedron in $\mathbb{R}^3$, SIAM Journal on Scientific Computing, 31 (2009), 799-825.
doi: 10.1137/060673850.
|
[5]
|
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen,
LAPACK Users' Guide, 3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
|
[6]
|
V. V. Aristov,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Fluid Mechanics and Its Applications, Kluwer Academic Publishers, 2001.
doi: 10.1007/978-94-010-0866-2.
|
[7]
|
V. V. Aristov and S. A. Zabelok, A deterministic method for the solution of the Boltzmann equation with parallel computations, Zhurnal Vychislitel'noi Tekhniki i Matematicheskoi Physiki, 42 (2002), 425-437.
|
[8]
|
H. Babovsky, Kinetic models on orthogonal groups and the simulation of the Boltzmann
equation, AIP Conference Proceedings, 1084 (2008), 415–420, URL http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3076513.
|
[9]
|
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
|
[10]
|
G. A. Bird,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series, Oxford University Press, New York, USA, 1995.
|
[11]
|
C. M. Bishop,
Neural Networks for Pattern Recognition, Advanced Texts in Econometrics, Clarendon Press, 1995.
|
[12]
|
A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on the fast Fourier transform., European Journal of Mechanics -B/Fluids, 16 (1997), 293-306.
|
[13]
|
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation
for hard spheres, European Journal of Mechanics -B/Fluids, 18 (1999), 869–887, URL
http://www.sciencedirect.com/science/article/pii/S0997754699001211.
doi: 10.1016/S0997-7546(99)00121-1.
|
[14]
|
I. D. Boyd, Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics, Journal of Computational Physics, 96 (1991), 411–427, URL http://www.sciencedirect.com/science/article/pii/002199919190243E.
|
[15]
|
J. M. Burt, E. Josyula and I. D. Boyd, Novel Cartesian implementation of the direct simulation Monte Carlo method, Journal of Thermophysics and Heat Transfer, 26 (2012), 258-270.
|
[16]
|
L. Devroye, General principles in random variate generation, in Non-Uniform Random Variate
Generation, Springer New York, 1986, 27–82.
doi: 10.1007/978-1-4613-8643-8_2.
|
[17]
|
G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numerica, 23 (2014), 369-520.
doi: 10.1017/S0962492914000063.
|
[18]
|
I. D. Dinov, Expectation maximization and mixture modeling tutorial, in Statistics Online Computational Resource, UCLA: Statistics Online Computational Resource, 2008, URL http://escholarship.org/uc/item/1rb70972.
|
[19]
|
F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann
equation, Transactions of the American Mathematical Society, 363 (2011), 1947–1980, URL
http://www.jstor.org/stable/41104652.
doi: 10.1090/S0002-9947-2010-05303-6.
|
[20]
|
F. Filbet, C. Mouhot and L. Pareschi, Solving the Boltzmann equation in ${N}\log_2{N}$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053.
doi: 10.1137/050625175.
|
[21]
|
F. Filbet, L. Pareschi and T. Rey, On steady-state preserving spectral methods for homogeneous Boltzmann equations, Comptes Rendus Mathematique, 353 (2015), 309–314, URL
http://www.sciencedirect.com/science/article/pii/S1631073X15000412.
doi: 10.1016/j.crma.2015.01.015.
|
[22]
|
E. Fonn, P. Grohs and R. Hiptmair, Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation, IMA Journal of Numerical Analysis, 35 (2015), 1533-1567.
doi: 10.1093/imanum/dru042.
|
[23]
|
R. O. Fox and P. Vedula, Quadrature-based moment model for moderately dense polydisperse gas-particle flows, Industrial and Engineering Chemistry Research, 49 (2010), 5174-5187.
doi: 10.1021/ie9013138.
|
[24]
|
I. M. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., 228 (2009), 2012-2036.
doi: 10.1016/j.jcp.2008.09.033.
|
[25]
|
I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460.
doi: 10.4208/jcm.1003-m0011.
|
[26]
|
I. M. Gamba and C. Zhang, A conservative discontinuous Galerkin scheme with $O(n^2)$ operations in computing Boltzmann collision weight matrix, in 29th International Symposium on Rarefied Gas Dynamics, July 2014, China, AIP Conference Proceedings, American Institute of Physics, 2014, 8pp.
|
[27]
|
B. I. Green and P. Vedula, Validation of a collisional lattice Boltzmann method, in 20th AIAA Computational Fluid Dynamics Conference, 27-30 June 2011, Honolulu Hawaii, AIP Conference Proceedings, American Institute of Physics, 2011, 14pp.
|
[28]
|
L. H. Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
doi: 10.1063/1.1761920.
|
[29]
|
M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko, Y. Bondar, G. Zhukova
and S. Nikiforov, SMILE system for 2D/3D DSMC computations, in 25th International Symposium on Rarefied Gas Dynamics, 21–28 July 2006, St. Petersburg, Russia, AIP Conference
Proceedings, Publishing House of the Siberian Branch of the Russian Academy of Sciences,
Novosibirsk, Russia, 2007, 8pp.
|
[30]
|
D. Kalman, A singularly valuable decomposition: The SVD of a matrix, College Math Journal, 27 (1996), 2-23.
|
[31]
|
R. Kirsch and S. Rjasanow, A weak formulation of the Boltzmann equation based on the Fourier transform, Journal of Statistical Physics, 129 (2007), 483-492.
doi: 10.1007/s10955-007-9374-1.
|
[32]
|
Y. Y. Kloss, F. G. Tcheremissine and P. V. Shuvalov, Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels, Computational Mathematics and Mathematical Physics, 50 (2010), 1093-1103.
doi: 10.1134/S096554251006014X.
|
[33]
|
R. Larsen, PROPACK: Computing the singular value decomposition of large and sparse or structured matrices. Computer software, 2005.
|
[34]
|
C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.
doi: 10.1007/BF02179552.
|
[35]
|
A. Majorana, A numerical model of the Boltzmann equation related to the discontinuous Galerkin method, Kinetic and Related Models, 4 (2011), 139-151.
doi: 10.3934/krm.2011.4.139.
|
[36]
|
C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator,
Mathematics of Computation, 75 (2006), 1833–1852, URL http://www.jstor.org/stable/4100126.
doi: 10.1090/S0025-5718-06-01874-6.
|
[37]
|
A. Munafò, J. R. Haack, I. M. Gamba and T. E. Magin, A spectral-lagrangian Boltzmann
solver for a multi-energy level gas, Journal of Computational Physics, 264 (2014), 152–176,
URL http://www.sciencedirect.com/science/article/pii/S0021999114000631.
doi: 10.1016/j.jcp.2014.01.036.
|
[38]
|
A. Narayan and A. Klöckner, Deterministic numerical schemes for the Boltzmann equation, arXiv: 0911.3589.
|
[39]
|
V. A. Panferov and A. G. Heintz, A new consistent discrete-velocity model for the Boltzmann equation, Mathematical Methods in the Applied Sciences, 25 (2002), 571-593.
doi: 10.1002/mma.303.
|
[40]
|
L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382.
doi: 10.1080/00411459608220707.
|
[41]
|
C. R. Schrock and A. W. Wood, Convergence of a distributional Monte Carlo method for the Boltzmann equation, Advances in Applied Mathematics and Mechanics, 4 (2012), 102-121.
doi: 10.4208/aamm.10-m11113.
|
[42]
|
C. R. Schrock and A. W. Wood, Distributional Monte Carlo solution technique for rarefied gasdynamics, Journal of Thermophysics and Heat Transfer, 26 (2012), 185-189.
|
[43]
|
N. Selden, C. Ngalande, N. Gimelshein, S. Gimelshein and A. Ketsdever, Origins of radiometric forces on a circular vane with a temperature gradient, Journal of Fluid Mechanics, 634
(2009), 419–431, URL http://journals.cambridge.org/article_S0022112009007976.
doi: 10.1017/S0022112009007976.
|
[44]
|
E. M. Shakhov, Approximate kinetic equations in rarefied gas theory, Fluid Dynamics, 3 (1968), 112-115.
doi: 10.1007/BF01016254.
|
[45]
|
E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3 (1968), 95-96.
doi: 10.1007/BF01029546.
|
[46]
|
K. Stephani, D. Goldstein and P. Varghese, Generation of a hybrid DSMC/CFD solution for gas mixtures with internal degrees of freedom, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, 2012, p648.
doi: 10.2514/6.2012-648.
|
[47]
|
H. Struchtrup,
Macroscopic Tansport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, Interaction of Mechanics and Mathematics Series, Springer, Heidelberg, 2005.
|
[48]
|
S. Succi,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 2013, URL https://books.google.com/books?id=OC0Sj_xgnhAC.
|
[49]
|
F. G. Tcheremissine, Solution to the Boltzmann kinetic equation for high-speed flows, Computational Mathematics and Mathematical Physics, 46 (2006), 315-329.
|
[50]
|
F. G. Tcheremissine, Method for solving the Boltzmann kinetic equation for polyatomic gases, Computational Mathematics and Mathematical Physics, 52 (2012), 252-268.
doi: 10.1134/S0965542512020054.
|
[51]
|
V. A. Titarev, Efficient deterministic modelling of three-dimensional rarefied gas flows, Communications in Computational Physics, 12 (2012), 162-192.
doi: 10.4208/cicp.220111.140711a.
|
[52]
|
L. Wu, C. White, T. J. Scanlon, J. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27–52, URL http://www.sciencedirect.com/science/article/pii/S0021999113003276.
|
[53]
|
L. Wu, J. Zhang, J. M. Reese and Y. Zhang, A fast spectral method for the Boltzmann
equation for monatomic gas mixtures, Journal of Computational Physics, 298 (2015), 602–
621, URL http://www.sciencedirect.com/science/article/pii/S0021999115004167.
doi: 10.1016/j.jcp.2015.06.019.
|