
-
Previous Article
Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations
- KRM Home
- This Issue
-
Next Article
On global solutions to the Vlasov-Poisson system with radiation damping
A deterministic-stochastic method for computing the Boltzmann collision integral in $\mathcal{O}(MN)$ operations
1. | Department of Mathematics, California State University Northridge, Northridge, CA 91330, USA |
2. | Department of Mathematics & Statistics, Wright State University, Dayton, OH 45435, USA |
3. | Department of Mathematics & Statistics, Air Force Institute of Technology, WPAFB, OH 45433, USA |
We developed and implemented a numerical algorithm for evaluating the Boltzmann collision integral with $O(MN)$ operations, where $N$ is the number of the discrete velocity points and $M <N$. At the base of the algorithm are nodal-discontinuous Galerkin discretizations of the collision operator on uniform grids and a bilinear convolution form of the Galerkin projection of the collision operator. Efficiency of the algorithm is achieved by applying singular value decomposition compression of the discrete collision kernel and by approximating the kinetic solution by a sum of Maxwellian streams using a stochastic likelihood maximization algorithm. Accuracy of the method is established on solutions to the problem of spatially homogeneous relaxation.
References:
[1] |
A. Alekseenko and C. Euler,
A Bhatnagar-Gross-Krook kinetic model with velocity-dependent collision frequency and corrected relaxation of moments, Continuum Mechanics and Thermodynamics, 28 (2016), 751-763.
doi: 10.1007/s00161-014-0407-0. |
[2] |
A. Alekseenko and E. Josyula, Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity discretization, in 28th International Symposium on Rarefied Gas Dynamics, 9-13 July 2012, Zaragoza, Spain, AIP Conference Proceedings, American Institute of Physics, 2012, 8pp. Google Scholar |
[3] |
A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, emphJournal of Computational Physics, 272 (2014), 170–188, URL http://www.sciencedirect.com/science/article/pii/S0021999114002186.
doi: 10.1016/j.jcp.2014.03.031. |
[4] |
L. Andallah and H. Babovsky,
A discrete Boltzmann equation based on a cub-octahedron in $\mathbb{R}^3$, SIAM Journal on Scientific Computing, 31 (2009), 799-825.
doi: 10.1137/060673850. |
[5] |
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide, 3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999. Google Scholar |
[6] |
V. V. Aristov,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Fluid Mechanics and Its Applications, Kluwer Academic Publishers, 2001.
doi: 10.1007/978-94-010-0866-2. |
[7] |
V. V. Aristov and S. A. Zabelok,
A deterministic method for the solution of the Boltzmann equation with parallel computations, Zhurnal Vychislitel'noi Tekhniki i Matematicheskoi Physiki, 42 (2002), 425-437.
|
[8] |
H. Babovsky, Kinetic models on orthogonal groups and the simulation of the Boltzmann equation, AIP Conference Proceedings, 1084 (2008), 415–420, URL http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3076513. Google Scholar |
[9] |
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525. Google Scholar |
[10] |
G. A. Bird,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series, Oxford University Press, New York, USA, 1995. |
[11] |
C. M. Bishop,
Neural Networks for Pattern Recognition, Advanced Texts in Econometrics, Clarendon Press, 1995. |
[12] |
A. V. Bobylev and S. Rjasanow,
Difference scheme for the Boltzmann equation based on the fast Fourier transform., European Journal of Mechanics -B/Fluids, 16 (1997), 293-306.
|
[13] |
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation
for hard spheres, European Journal of Mechanics -B/Fluids, 18 (1999), 869–887, URL
http://www.sciencedirect.com/science/article/pii/S0997754699001211.
doi: 10.1016/S0997-7546(99)00121-1. |
[14] |
I. D. Boyd, Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics, Journal of Computational Physics, 96 (1991), 411–427, URL http://www.sciencedirect.com/science/article/pii/002199919190243E. Google Scholar |
[15] |
J. M. Burt, E. Josyula and I. D. Boyd, Novel Cartesian implementation of the direct simulation Monte Carlo method, Journal of Thermophysics and Heat Transfer, 26 (2012), 258-270. Google Scholar |
[16] |
L. Devroye, General principles in random variate generation, in Non-Uniform Random Variate
Generation, Springer New York, 1986, 27–82.
doi: 10.1007/978-1-4613-8643-8_2. |
[17] |
G. Dimarco and L. Pareschi,
Numerical methods for kinetic equations, Acta Numerica, 23 (2014), 369-520.
doi: 10.1017/S0962492914000063. |
[18] |
I. D. Dinov, Expectation maximization and mixture modeling tutorial, in Statistics Online Computational Resource, UCLA: Statistics Online Computational Resource, 2008, URL http://escholarship.org/uc/item/1rb70972. Google Scholar |
[19] |
F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann
equation, Transactions of the American Mathematical Society, 363 (2011), 1947–1980, URL
http://www.jstor.org/stable/41104652.
doi: 10.1090/S0002-9947-2010-05303-6. |
[20] |
F. Filbet, C. Mouhot and L. Pareschi,
Solving the Boltzmann equation in ${N}\log_2{N}$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053.
doi: 10.1137/050625175. |
[21] |
F. Filbet, L. Pareschi and T. Rey, On steady-state preserving spectral methods for homogeneous Boltzmann equations, Comptes Rendus Mathematique, 353 (2015), 309–314, URL
http://www.sciencedirect.com/science/article/pii/S1631073X15000412.
doi: 10.1016/j.crma.2015.01.015. |
[22] |
E. Fonn, P. Grohs and R. Hiptmair,
Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation, IMA Journal of Numerical Analysis, 35 (2015), 1533-1567.
doi: 10.1093/imanum/dru042. |
[23] |
R. O. Fox and P. Vedula,
Quadrature-based moment model for moderately dense polydisperse gas-particle flows, Industrial and Engineering Chemistry Research, 49 (2010), 5174-5187.
doi: 10.1021/ie9013138. |
[24] |
I. M. Gamba and S. H. Tharkabhushanam,
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., 228 (2009), 2012-2036.
doi: 10.1016/j.jcp.2008.09.033. |
[25] |
I. M. Gamba and S. H. Tharkabhushanam,
Shock and boundary structure formation by spectral-lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460.
doi: 10.4208/jcm.1003-m0011. |
[26] |
I. M. Gamba and C. Zhang, A conservative discontinuous Galerkin scheme with $O(n^2)$ operations in computing Boltzmann collision weight matrix, in 29th International Symposium on Rarefied Gas Dynamics, July 2014, China, AIP Conference Proceedings, American Institute of Physics, 2014, 8pp. Google Scholar |
[27] |
B. I. Green and P. Vedula, Validation of a collisional lattice Boltzmann method, in 20th AIAA Computational Fluid Dynamics Conference, 27-30 June 2011, Honolulu Hawaii, AIP Conference Proceedings, American Institute of Physics, 2011, 14pp. Google Scholar |
[28] |
L. H. Holway,
New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
doi: 10.1063/1.1761920. |
[29] |
M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko, Y. Bondar, G. Zhukova and S. Nikiforov, SMILE system for 2D/3D DSMC computations, in 25th International Symposium on Rarefied Gas Dynamics, 21–28 July 2006, St. Petersburg, Russia, AIP Conference Proceedings, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2007, 8pp. Google Scholar |
[30] |
D. Kalman, A singularly valuable decomposition: The SVD of a matrix, College Math Journal, 27 (1996), 2-23. Google Scholar |
[31] |
R. Kirsch and S. Rjasanow,
A weak formulation of the Boltzmann equation based on the Fourier transform, Journal of Statistical Physics, 129 (2007), 483-492.
doi: 10.1007/s10955-007-9374-1. |
[32] |
Y. Y. Kloss, F. G. Tcheremissine and P. V. Shuvalov,
Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels, Computational Mathematics and Mathematical Physics, 50 (2010), 1093-1103.
doi: 10.1134/S096554251006014X. |
[33] |
R. Larsen, PROPACK: Computing the singular value decomposition of large and sparse or structured matrices. Computer software, 2005. Google Scholar |
[34] |
C. D. Levermore,
Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[35] |
A. Majorana,
A numerical model of the Boltzmann equation related to the discontinuous Galerkin method, Kinetic and Related Models, 4 (2011), 139-151.
doi: 10.3934/krm.2011.4.139. |
[36] |
C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator,
Mathematics of Computation, 75 (2006), 1833–1852, URL http://www.jstor.org/stable/4100126.
doi: 10.1090/S0025-5718-06-01874-6. |
[37] |
A. Munafò, J. R. Haack, I. M. Gamba and T. E. Magin, A spectral-lagrangian Boltzmann
solver for a multi-energy level gas, Journal of Computational Physics, 264 (2014), 152–176,
URL http://www.sciencedirect.com/science/article/pii/S0021999114000631.
doi: 10.1016/j.jcp.2014.01.036. |
[38] |
A. Narayan and A. Klöckner, Deterministic numerical schemes for the Boltzmann equation, arXiv: 0911.3589. Google Scholar |
[39] |
V. A. Panferov and A. G. Heintz,
A new consistent discrete-velocity model for the Boltzmann equation, Mathematical Methods in the Applied Sciences, 25 (2002), 571-593.
doi: 10.1002/mma.303. |
[40] |
L. Pareschi and B. Perthame,
A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382.
doi: 10.1080/00411459608220707. |
[41] |
C. R. Schrock and A. W. Wood,
Convergence of a distributional Monte Carlo method for the Boltzmann equation, Advances in Applied Mathematics and Mechanics, 4 (2012), 102-121.
doi: 10.4208/aamm.10-m11113. |
[42] |
C. R. Schrock and A. W. Wood, Distributional Monte Carlo solution technique for rarefied gasdynamics, Journal of Thermophysics and Heat Transfer, 26 (2012), 185-189. Google Scholar |
[43] |
N. Selden, C. Ngalande, N. Gimelshein, S. Gimelshein and A. Ketsdever, Origins of radiometric forces on a circular vane with a temperature gradient, Journal of Fluid Mechanics, 634
(2009), 419–431, URL http://journals.cambridge.org/article_S0022112009007976.
doi: 10.1017/S0022112009007976. |
[44] |
E. M. Shakhov,
Approximate kinetic equations in rarefied gas theory, Fluid Dynamics, 3 (1968), 112-115.
doi: 10.1007/BF01016254. |
[45] |
E. M. Shakhov,
Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3 (1968), 95-96.
doi: 10.1007/BF01029546. |
[46] |
K. Stephani, D. Goldstein and P. Varghese, Generation of a hybrid DSMC/CFD solution for gas mixtures with internal degrees of freedom, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, 2012, p648.
doi: 10.2514/6.2012-648. |
[47] |
H. Struchtrup,
Macroscopic Tansport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, Interaction of Mechanics and Mathematics Series, Springer, Heidelberg, 2005. |
[48] |
S. Succi,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 2013, URL https://books.google.com/books?id=OC0Sj_xgnhAC. |
[49] |
F. G. Tcheremissine,
Solution to the Boltzmann kinetic equation for high-speed flows, Computational Mathematics and Mathematical Physics, 46 (2006), 315-329.
|
[50] |
F. G. Tcheremissine,
Method for solving the Boltzmann kinetic equation for polyatomic gases, Computational Mathematics and Mathematical Physics, 52 (2012), 252-268.
doi: 10.1134/S0965542512020054. |
[51] |
V. A. Titarev,
Efficient deterministic modelling of three-dimensional rarefied gas flows, Communications in Computational Physics, 12 (2012), 162-192.
doi: 10.4208/cicp.220111.140711a. |
[52] |
L. Wu, C. White, T. J. Scanlon, J. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27–52, URL http://www.sciencedirect.com/science/article/pii/S0021999113003276. |
[53] |
L. Wu, J. Zhang, J. M. Reese and Y. Zhang, A fast spectral method for the Boltzmann
equation for monatomic gas mixtures, Journal of Computational Physics, 298 (2015), 602–
621, URL http://www.sciencedirect.com/science/article/pii/S0021999115004167.
doi: 10.1016/j.jcp.2015.06.019. |
show all references
References:
[1] |
A. Alekseenko and C. Euler,
A Bhatnagar-Gross-Krook kinetic model with velocity-dependent collision frequency and corrected relaxation of moments, Continuum Mechanics and Thermodynamics, 28 (2016), 751-763.
doi: 10.1007/s00161-014-0407-0. |
[2] |
A. Alekseenko and E. Josyula, Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity discretization, in 28th International Symposium on Rarefied Gas Dynamics, 9-13 July 2012, Zaragoza, Spain, AIP Conference Proceedings, American Institute of Physics, 2012, 8pp. Google Scholar |
[3] |
A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, emphJournal of Computational Physics, 272 (2014), 170–188, URL http://www.sciencedirect.com/science/article/pii/S0021999114002186.
doi: 10.1016/j.jcp.2014.03.031. |
[4] |
L. Andallah and H. Babovsky,
A discrete Boltzmann equation based on a cub-octahedron in $\mathbb{R}^3$, SIAM Journal on Scientific Computing, 31 (2009), 799-825.
doi: 10.1137/060673850. |
[5] |
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide, 3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999. Google Scholar |
[6] |
V. V. Aristov,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Fluid Mechanics and Its Applications, Kluwer Academic Publishers, 2001.
doi: 10.1007/978-94-010-0866-2. |
[7] |
V. V. Aristov and S. A. Zabelok,
A deterministic method for the solution of the Boltzmann equation with parallel computations, Zhurnal Vychislitel'noi Tekhniki i Matematicheskoi Physiki, 42 (2002), 425-437.
|
[8] |
H. Babovsky, Kinetic models on orthogonal groups and the simulation of the Boltzmann equation, AIP Conference Proceedings, 1084 (2008), 415–420, URL http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3076513. Google Scholar |
[9] |
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525. Google Scholar |
[10] |
G. A. Bird,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series, Oxford University Press, New York, USA, 1995. |
[11] |
C. M. Bishop,
Neural Networks for Pattern Recognition, Advanced Texts in Econometrics, Clarendon Press, 1995. |
[12] |
A. V. Bobylev and S. Rjasanow,
Difference scheme for the Boltzmann equation based on the fast Fourier transform., European Journal of Mechanics -B/Fluids, 16 (1997), 293-306.
|
[13] |
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation
for hard spheres, European Journal of Mechanics -B/Fluids, 18 (1999), 869–887, URL
http://www.sciencedirect.com/science/article/pii/S0997754699001211.
doi: 10.1016/S0997-7546(99)00121-1. |
[14] |
I. D. Boyd, Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics, Journal of Computational Physics, 96 (1991), 411–427, URL http://www.sciencedirect.com/science/article/pii/002199919190243E. Google Scholar |
[15] |
J. M. Burt, E. Josyula and I. D. Boyd, Novel Cartesian implementation of the direct simulation Monte Carlo method, Journal of Thermophysics and Heat Transfer, 26 (2012), 258-270. Google Scholar |
[16] |
L. Devroye, General principles in random variate generation, in Non-Uniform Random Variate
Generation, Springer New York, 1986, 27–82.
doi: 10.1007/978-1-4613-8643-8_2. |
[17] |
G. Dimarco and L. Pareschi,
Numerical methods for kinetic equations, Acta Numerica, 23 (2014), 369-520.
doi: 10.1017/S0962492914000063. |
[18] |
I. D. Dinov, Expectation maximization and mixture modeling tutorial, in Statistics Online Computational Resource, UCLA: Statistics Online Computational Resource, 2008, URL http://escholarship.org/uc/item/1rb70972. Google Scholar |
[19] |
F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann
equation, Transactions of the American Mathematical Society, 363 (2011), 1947–1980, URL
http://www.jstor.org/stable/41104652.
doi: 10.1090/S0002-9947-2010-05303-6. |
[20] |
F. Filbet, C. Mouhot and L. Pareschi,
Solving the Boltzmann equation in ${N}\log_2{N}$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053.
doi: 10.1137/050625175. |
[21] |
F. Filbet, L. Pareschi and T. Rey, On steady-state preserving spectral methods for homogeneous Boltzmann equations, Comptes Rendus Mathematique, 353 (2015), 309–314, URL
http://www.sciencedirect.com/science/article/pii/S1631073X15000412.
doi: 10.1016/j.crma.2015.01.015. |
[22] |
E. Fonn, P. Grohs and R. Hiptmair,
Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation, IMA Journal of Numerical Analysis, 35 (2015), 1533-1567.
doi: 10.1093/imanum/dru042. |
[23] |
R. O. Fox and P. Vedula,
Quadrature-based moment model for moderately dense polydisperse gas-particle flows, Industrial and Engineering Chemistry Research, 49 (2010), 5174-5187.
doi: 10.1021/ie9013138. |
[24] |
I. M. Gamba and S. H. Tharkabhushanam,
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., 228 (2009), 2012-2036.
doi: 10.1016/j.jcp.2008.09.033. |
[25] |
I. M. Gamba and S. H. Tharkabhushanam,
Shock and boundary structure formation by spectral-lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460.
doi: 10.4208/jcm.1003-m0011. |
[26] |
I. M. Gamba and C. Zhang, A conservative discontinuous Galerkin scheme with $O(n^2)$ operations in computing Boltzmann collision weight matrix, in 29th International Symposium on Rarefied Gas Dynamics, July 2014, China, AIP Conference Proceedings, American Institute of Physics, 2014, 8pp. Google Scholar |
[27] |
B. I. Green and P. Vedula, Validation of a collisional lattice Boltzmann method, in 20th AIAA Computational Fluid Dynamics Conference, 27-30 June 2011, Honolulu Hawaii, AIP Conference Proceedings, American Institute of Physics, 2011, 14pp. Google Scholar |
[28] |
L. H. Holway,
New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
doi: 10.1063/1.1761920. |
[29] |
M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko, Y. Bondar, G. Zhukova and S. Nikiforov, SMILE system for 2D/3D DSMC computations, in 25th International Symposium on Rarefied Gas Dynamics, 21–28 July 2006, St. Petersburg, Russia, AIP Conference Proceedings, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2007, 8pp. Google Scholar |
[30] |
D. Kalman, A singularly valuable decomposition: The SVD of a matrix, College Math Journal, 27 (1996), 2-23. Google Scholar |
[31] |
R. Kirsch and S. Rjasanow,
A weak formulation of the Boltzmann equation based on the Fourier transform, Journal of Statistical Physics, 129 (2007), 483-492.
doi: 10.1007/s10955-007-9374-1. |
[32] |
Y. Y. Kloss, F. G. Tcheremissine and P. V. Shuvalov,
Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels, Computational Mathematics and Mathematical Physics, 50 (2010), 1093-1103.
doi: 10.1134/S096554251006014X. |
[33] |
R. Larsen, PROPACK: Computing the singular value decomposition of large and sparse or structured matrices. Computer software, 2005. Google Scholar |
[34] |
C. D. Levermore,
Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[35] |
A. Majorana,
A numerical model of the Boltzmann equation related to the discontinuous Galerkin method, Kinetic and Related Models, 4 (2011), 139-151.
doi: 10.3934/krm.2011.4.139. |
[36] |
C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator,
Mathematics of Computation, 75 (2006), 1833–1852, URL http://www.jstor.org/stable/4100126.
doi: 10.1090/S0025-5718-06-01874-6. |
[37] |
A. Munafò, J. R. Haack, I. M. Gamba and T. E. Magin, A spectral-lagrangian Boltzmann
solver for a multi-energy level gas, Journal of Computational Physics, 264 (2014), 152–176,
URL http://www.sciencedirect.com/science/article/pii/S0021999114000631.
doi: 10.1016/j.jcp.2014.01.036. |
[38] |
A. Narayan and A. Klöckner, Deterministic numerical schemes for the Boltzmann equation, arXiv: 0911.3589. Google Scholar |
[39] |
V. A. Panferov and A. G. Heintz,
A new consistent discrete-velocity model for the Boltzmann equation, Mathematical Methods in the Applied Sciences, 25 (2002), 571-593.
doi: 10.1002/mma.303. |
[40] |
L. Pareschi and B. Perthame,
A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382.
doi: 10.1080/00411459608220707. |
[41] |
C. R. Schrock and A. W. Wood,
Convergence of a distributional Monte Carlo method for the Boltzmann equation, Advances in Applied Mathematics and Mechanics, 4 (2012), 102-121.
doi: 10.4208/aamm.10-m11113. |
[42] |
C. R. Schrock and A. W. Wood, Distributional Monte Carlo solution technique for rarefied gasdynamics, Journal of Thermophysics and Heat Transfer, 26 (2012), 185-189. Google Scholar |
[43] |
N. Selden, C. Ngalande, N. Gimelshein, S. Gimelshein and A. Ketsdever, Origins of radiometric forces on a circular vane with a temperature gradient, Journal of Fluid Mechanics, 634
(2009), 419–431, URL http://journals.cambridge.org/article_S0022112009007976.
doi: 10.1017/S0022112009007976. |
[44] |
E. M. Shakhov,
Approximate kinetic equations in rarefied gas theory, Fluid Dynamics, 3 (1968), 112-115.
doi: 10.1007/BF01016254. |
[45] |
E. M. Shakhov,
Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3 (1968), 95-96.
doi: 10.1007/BF01029546. |
[46] |
K. Stephani, D. Goldstein and P. Varghese, Generation of a hybrid DSMC/CFD solution for gas mixtures with internal degrees of freedom, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, 2012, p648.
doi: 10.2514/6.2012-648. |
[47] |
H. Struchtrup,
Macroscopic Tansport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, Interaction of Mechanics and Mathematics Series, Springer, Heidelberg, 2005. |
[48] |
S. Succi,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 2013, URL https://books.google.com/books?id=OC0Sj_xgnhAC. |
[49] |
F. G. Tcheremissine,
Solution to the Boltzmann kinetic equation for high-speed flows, Computational Mathematics and Mathematical Physics, 46 (2006), 315-329.
|
[50] |
F. G. Tcheremissine,
Method for solving the Boltzmann kinetic equation for polyatomic gases, Computational Mathematics and Mathematical Physics, 52 (2012), 252-268.
doi: 10.1134/S0965542512020054. |
[51] |
V. A. Titarev,
Efficient deterministic modelling of three-dimensional rarefied gas flows, Communications in Computational Physics, 12 (2012), 162-192.
doi: 10.4208/cicp.220111.140711a. |
[52] |
L. Wu, C. White, T. J. Scanlon, J. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27–52, URL http://www.sciencedirect.com/science/article/pii/S0021999113003276. |
[53] |
L. Wu, J. Zhang, J. M. Reese and Y. Zhang, A fast spectral method for the Boltzmann
equation for monatomic gas mixtures, Journal of Computational Physics, 298 (2015), 602–
621, URL http://www.sciencedirect.com/science/article/pii/S0021999115004167.
doi: 10.1016/j.jcp.2015.06.019. |


10 | 4.1E+0 | 1.7E-1 | 3.1E-1 | 2.1E-1 |
80 | 1.0E+0 | 3.7E-2 | 5.8E-1 | 5.3E-2 |
160 | 5.7E-1 | 1.6E-2 | 2.9E-2 | 2.0E-2 |
320 | 3.6E-1 | 1.5E-2 | 2.5E-2 | 1.8E-2 |
640 | 2.2E-1 | 3.3E-3 | 8.4E-3 | 4.4E-3 |
960 | 1.1E-1 | 1.3E-3 | 5.7E-3 | 2.2E-3 |
1120 | 5.8E-2 | 2.3E-3 | 5.9E-3 | 2.3E-3 |
1280 | 4.1E-3 | 1.7E-5 | 2.1E-3 | 3.1E-5 |
1400 | 4.6E-5 | 2.2E-7 | 2.0E-3 | 3.9E-7 |
10 | 4.1E+0 | 1.7E-1 | 3.1E-1 | 2.1E-1 |
80 | 1.0E+0 | 3.7E-2 | 5.8E-1 | 5.3E-2 |
160 | 5.7E-1 | 1.6E-2 | 2.9E-2 | 2.0E-2 |
320 | 3.6E-1 | 1.5E-2 | 2.5E-2 | 1.8E-2 |
640 | 2.2E-1 | 3.3E-3 | 8.4E-3 | 4.4E-3 |
960 | 1.1E-1 | 1.3E-3 | 5.7E-3 | 2.2E-3 |
1120 | 5.8E-2 | 2.3E-3 | 5.9E-3 | 2.3E-3 |
1280 | 4.1E-3 | 1.7E-5 | 2.1E-3 | 3.1E-5 |
1400 | 4.6E-5 | 2.2E-7 | 2.0E-3 | 3.9E-7 |
| | | | |
10 | 5.0E+0 | 1.0E-1 | 5.2E-1 | 3.7E-1 |
100 | 1.7E+0 | 4.1E-2 | 2.0E-1 | 3.5E-1 |
500 | 5.4E-1 | 5.0E-3 | 2.3E-2 | 2.5E-2 |
1000 | 2.9E-1 | 3.3E-3 | 1.6E-2 | 1.5E-2 |
2000 | 1.7E-1 | 1.6E-3 | 7.9E-3 | 4.7E-3 |
2900 | 1.3E-1 | 1.5E-3 | 7.5E-3 | 3.9E-3 |
4800 | 9.6E-2 | 9.2E-4 | 4.6E-3 | 2.3E-3 |
9900 | 4.3E-2 | 1.6E-4 | 3.5E-3 | 5.3E-4 |
14400 | 2.8E-12 | 2.8E-5 | 3.5E-3 | 9.2E-7 |
| | | | |
10 | 5.0E+0 | 1.0E-1 | 5.2E-1 | 3.7E-1 |
100 | 1.7E+0 | 4.1E-2 | 2.0E-1 | 3.5E-1 |
500 | 5.4E-1 | 5.0E-3 | 2.3E-2 | 2.5E-2 |
1000 | 2.9E-1 | 3.3E-3 | 1.6E-2 | 1.5E-2 |
2000 | 1.7E-1 | 1.6E-3 | 7.9E-3 | 4.7E-3 |
2900 | 1.3E-1 | 1.5E-3 | 7.5E-3 | 3.9E-3 |
4800 | 9.6E-2 | 9.2E-4 | 4.6E-3 | 2.3E-3 |
9900 | 4.3E-2 | 1.6E-4 | 3.5E-3 | 5.3E-4 |
14400 | 2.8E-12 | 2.8E-5 | 3.5E-3 | 9.2E-7 |
| | ||||
| CPU Time, s | Speedup | | CPU Time, s | Speedup |
160 | 2.0 | 16.4 | 4000 | 444.1 | 40.0 |
320 | 3.8 | 8.7 | 6000 | 668.10 | 26.6 |
480 | 5.4 | 6.1 | 8000 | 890.2 | 19.9 |
640 | 7.0 | 4.8 | 10000 | 1113.4 | 15.9 |
960 | 10.3 | 3.2 | 12000 | 1333.6 | 13.3 |
1400 | 16.0 | 2.1 | 14000 | 1559.4 | 11.4 |
DG Boltzmann CPU Time: 33.18 s | DG Boltzmann CPU Time: 17758 s |
| | ||||
| CPU Time, s | Speedup | | CPU Time, s | Speedup |
160 | 2.0 | 16.4 | 4000 | 444.1 | 40.0 |
320 | 3.8 | 8.7 | 6000 | 668.10 | 26.6 |
480 | 5.4 | 6.1 | 8000 | 890.2 | 19.9 |
640 | 7.0 | 4.8 | 10000 | 1113.4 | 15.9 |
960 | 10.3 | 3.2 | 12000 | 1333.6 | 13.3 |
1400 | 16.0 | 2.1 | 14000 | 1559.4 | 11.4 |
DG Boltzmann CPU Time: 33.18 s | DG Boltzmann CPU Time: 17758 s |
| | | | | | | | | | | |
0.0 | 1.54 | 0.30 | 0.78 | 1.1E-2 | 3.6E-4 | 2.94 | 0.46 | 0.44 | -7.4E-3 | -2.9E-3 | 8.5E-3 |
0.04 | 1.66 | 0.30 | 0.77 | 1.9E-3 | -7.4E-3 | 2.81 | 0.47 | 0.43 | -2.5E-4 | 9.7E-4 | 8.3E-3 |
0.45 | 3.31 | 0.46 | 0.48 | 5.8E-4 | 1.2E-3 | 1.16 | 0.29 | 0.78 | 6.3E-3 | 4.7E-4 | 7.8E-3 |
0.87 | 1.19 | 0.30 | 0.76 | 1.9E-3 | 1.0E-2 | 3.28 | 0.45 | 0.48 | 3.3E-4 | -2.0E-3 | 5.8E-3 |
1.7 | 1.30 | 0.33 | 0.69 | 6.6E-4 | 1.5E-2 | 3.17 | 0.46 | 0.50 | 6.6E-4 | -8.9E-3 | 7.8E-3 |
2.9 | 2.93 | 0.45 | 0.51 | -3.7E-3 | 7.8E-3 | 1.54 | 0.37 | 0.65 | 4.5E-3 | -9.3E-3 | 7.1E-3 |
3.8 | 1.29 | 0.36 | 0.65 | -1.6E-2 | -1.2E-2 | 3.18 | 0.44 | 0.52 | 9.0E-3 | 5.2E-3 | 6.9E-3 |
4.2 | 3.53 | 0.44 | 0.53 | -4.0E-3 | -3.2E-3 | 0.94 | 0.36 | 0.66 | 1.2E-2 | 1.3E-2 | 5.9E-3 |
4.5 | 2.21 | 0.44 | 0.52 | -1.2E-2 | -2.7E-2 | 2.26 | 0.40 | 0.60 | 1.3E-2 | 2.8E-2 | 7.0E-3 |
6.2 | 2.34 | 0.42 | 0.53 | 2.6E-2 | -8.2E-3 | 2.13 | 0.42 | 0.59 | -2.7E-2 | 9.9E-3 | 6.1E-3 |
7.9 | 1.58 | 0.42 | 0.53 | 4.4E-2 | -4.3E-2 | 2.89 | 0.42 | 0.57 | -2.4E-2 | 2.3E-2 | 4.6E-3 |
| | | | | | | | | | | |
0.0 | 1.54 | 0.30 | 0.78 | 1.1E-2 | 3.6E-4 | 2.94 | 0.46 | 0.44 | -7.4E-3 | -2.9E-3 | 8.5E-3 |
0.04 | 1.66 | 0.30 | 0.77 | 1.9E-3 | -7.4E-3 | 2.81 | 0.47 | 0.43 | -2.5E-4 | 9.7E-4 | 8.3E-3 |
0.45 | 3.31 | 0.46 | 0.48 | 5.8E-4 | 1.2E-3 | 1.16 | 0.29 | 0.78 | 6.3E-3 | 4.7E-4 | 7.8E-3 |
0.87 | 1.19 | 0.30 | 0.76 | 1.9E-3 | 1.0E-2 | 3.28 | 0.45 | 0.48 | 3.3E-4 | -2.0E-3 | 5.8E-3 |
1.7 | 1.30 | 0.33 | 0.69 | 6.6E-4 | 1.5E-2 | 3.17 | 0.46 | 0.50 | 6.6E-4 | -8.9E-3 | 7.8E-3 |
2.9 | 2.93 | 0.45 | 0.51 | -3.7E-3 | 7.8E-3 | 1.54 | 0.37 | 0.65 | 4.5E-3 | -9.3E-3 | 7.1E-3 |
3.8 | 1.29 | 0.36 | 0.65 | -1.6E-2 | -1.2E-2 | 3.18 | 0.44 | 0.52 | 9.0E-3 | 5.2E-3 | 6.9E-3 |
4.2 | 3.53 | 0.44 | 0.53 | -4.0E-3 | -3.2E-3 | 0.94 | 0.36 | 0.66 | 1.2E-2 | 1.3E-2 | 5.9E-3 |
4.5 | 2.21 | 0.44 | 0.52 | -1.2E-2 | -2.7E-2 | 2.26 | 0.40 | 0.60 | 1.3E-2 | 2.8E-2 | 7.0E-3 |
6.2 | 2.34 | 0.42 | 0.53 | 2.6E-2 | -8.2E-3 | 2.13 | 0.42 | 0.59 | -2.7E-2 | 9.9E-3 | 6.1E-3 |
7.9 | 1.58 | 0.42 | 0.53 | 4.4E-2 | -4.3E-2 | 2.89 | 0.42 | 0.57 | -2.4E-2 | 2.3E-2 | 4.6E-3 |
| | | | | | | | | | | | | |
0.0 | 1.35 | 0.48 | 0.38 | -2.8E-2 | 1.51 | 0.44 | 0.48 | 3.0E-3 | 1.61 | 0.30 | 0.78 | -5.9E-3 | 6.6E-3 |
.04 | 1.97 | 0.43 | 0.51 | 1.0E-2 | 1.17 | 0.48 | 0.38 | -1.4E-2 | 1.33 | 0.29 | 0.79 | -9.6E-3 | 6.2E-3 |
.45 | 1.86 | 0.33 | 0.73 | 3.6E-3 | 0.68 | 0.47 | 0.45 | -4.9E-2 | 1.93 | 0.47 | 0.43 | 1.3E-2 | 7.9E-3 |
.87 | 0.89 | 0.46 | 0.40 | -9.0E-2 | 2.47 | 0.44 | 0.53 | 3.9E-2 | 1.11 | 0.31 | 0.75 | -1.1E-2 | 8.9E-3 |
1.7 | 0.92 | 0.29 | 0.73 | 5.5E-3 | 0.68 | 0.44 | 0.52 | 1.0E-1 | 2.87 | 0.45 | 0.51 | -2.7E-2 | 7.0E-3 |
2.9 | 1.59 | 0.42 | 0.58 | 1.4E-2 | 0.92 | 0.34 | 0.67 | -1.9E-2 | 1.96 | 0.45 | 0.49 | 5.7E-2 | 7.0E-3 |
3.8 | 2.01 | 0.39 | 0.62 | -3.0E-3 | 1.03 | 0.43 | 0.52 | 5.2E-2 | 1.43 | 0.45 | 0.50 | -3.0E-2 | 6.2E-3 |
4.2 | 1.64 | 0.43 | 0.54 | -2.5E-2 | 1.03 | 0.38 | 0.64 | -2.7E-2 | 1.80 | 0.43 | 0.52 | -6.7E-3 | 7.6E-3 |
4.5 | 1.50 | 0.45 | 0.49 | -4.1E-2 | 0.84 | 0.37 | 0.65 | -4.0E-2 | 2.13 | 0.42 | 0.57 | 4.2E-2 | 5.4E-3 |
6.2 | 1.90 | 0.41 | 0.56 | -2.3E-2 | 1.81 | 0.44 | 0.53 | 4.3E-2 | 0.76 | 0.39 | 0.63 | -3.0E-2 | 8.0E-3 |
7.9 | 1.34 | 0.42 | 0.60 | 2.9E-4 | 2.27 | 0.42 | 0.57 | -2.3E-2 | 0.84 | 0.41 | 0.47 | 6.1E-2 | 5.9E-3 |
| | | | | | | | | | | | | |
0.0 | 1.35 | 0.48 | 0.38 | -2.8E-2 | 1.51 | 0.44 | 0.48 | 3.0E-3 | 1.61 | 0.30 | 0.78 | -5.9E-3 | 6.6E-3 |
.04 | 1.97 | 0.43 | 0.51 | 1.0E-2 | 1.17 | 0.48 | 0.38 | -1.4E-2 | 1.33 | 0.29 | 0.79 | -9.6E-3 | 6.2E-3 |
.45 | 1.86 | 0.33 | 0.73 | 3.6E-3 | 0.68 | 0.47 | 0.45 | -4.9E-2 | 1.93 | 0.47 | 0.43 | 1.3E-2 | 7.9E-3 |
.87 | 0.89 | 0.46 | 0.40 | -9.0E-2 | 2.47 | 0.44 | 0.53 | 3.9E-2 | 1.11 | 0.31 | 0.75 | -1.1E-2 | 8.9E-3 |
1.7 | 0.92 | 0.29 | 0.73 | 5.5E-3 | 0.68 | 0.44 | 0.52 | 1.0E-1 | 2.87 | 0.45 | 0.51 | -2.7E-2 | 7.0E-3 |
2.9 | 1.59 | 0.42 | 0.58 | 1.4E-2 | 0.92 | 0.34 | 0.67 | -1.9E-2 | 1.96 | 0.45 | 0.49 | 5.7E-2 | 7.0E-3 |
3.8 | 2.01 | 0.39 | 0.62 | -3.0E-3 | 1.03 | 0.43 | 0.52 | 5.2E-2 | 1.43 | 0.45 | 0.50 | -3.0E-2 | 6.2E-3 |
4.2 | 1.64 | 0.43 | 0.54 | -2.5E-2 | 1.03 | 0.38 | 0.64 | -2.7E-2 | 1.80 | 0.43 | 0.52 | -6.7E-3 | 7.6E-3 |
4.5 | 1.50 | 0.45 | 0.49 | -4.1E-2 | 0.84 | 0.37 | 0.65 | -4.0E-2 | 2.13 | 0.42 | 0.57 | 4.2E-2 | 5.4E-3 |
6.2 | 1.90 | 0.41 | 0.56 | -2.3E-2 | 1.81 | 0.44 | 0.53 | 4.3E-2 | 0.76 | 0.39 | 0.63 | -3.0E-2 | 8.0E-3 |
7.9 | 1.34 | 0.42 | 0.60 | 2.9E-4 | 2.27 | 0.42 | 0.57 | -2.3E-2 | 0.84 | 0.41 | 0.47 | 6.1E-2 | 5.9E-3 |
[1] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[2] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[3] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[4] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[5] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[6] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[7] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[8] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[9] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[10] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[11] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[12] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[13] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[14] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[15] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383 |
[16] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[17] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[18] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 |
[19] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[20] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
2019 Impact Factor: 1.311
Tools
Article outline
Figures and Tables
[Back to Top]