[1]
|
G. W. Alldredge, C. D. Hauck, D. P. O'Leary and A. L. Tits, Adaptive change of basis
in entropy-based moment closures for linear kinetic equations, Journal of Computational
Physics, 258 (2014), 489–508, URL http://www.sciencedirect.com/science/article/pii/S0021999113007250.
doi: 10.1016/j.jcp.2013.10.049.
|
[2]
|
G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear
transport in slab geometry Ⅱ: A computational study of the optimization problem, SIAM
Journal on Scientific Computing, 34 (2012), B361–B391, URL http://epubs.siam.org/doi/abs/10.1137/11084772X.
doi: 10.1137/11084772X.
|
[3]
|
G. W. Alldredge and F. Schneider, A realizability-preserving discontinuous Galerkin scheme
for entropy-based moment closures for linear kinetic equations in one space dimension, Journal of Computational Physics, 295 (2015), 665–684, URL http://www.sciencedirect.com/science/article/pii/S0021999115002910.
doi: 10.1016/j.jcp.2015.04.034.
|
[4]
|
L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Wien.
Ber., 66 (1872), 275–370, URL http://ebooks.cambridge.org/ref/id/CBO9781139381420.
doi: 10.1007/978-3-322-84986-1_3.
|
[5]
|
T. A. Brunner and J. P. Holloway, One-dimensional Riemann solvers and the maximum
entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001),
543–566, URL http://www.sciencedirect.com/science/article/pii/S0022407300000996.
doi: 10.1016/S0022-4073(00)00099-6.
|
[6]
|
T. A. Brunner and J. P. Holloway, Two-dimensional time dependent Riemann solvers for
neutron transport, Journal of Computational Physics, 210 (2005), 386–399, URL http://www.sciencedirect.com/science/article/pii/S0021999105002275.
doi: 10.1016/j.jcp.2005.04.011.
|
[7]
|
C. Cercignani,
The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, Springer New York, 2012, URL https://books.google.de/books?id=OcTcBwAAQBAJ.
doi: 10.1007/978-1-4612-1039-9.
|
[8]
|
F. Chalub and P. Markowich, Kinetic models for chemotaxis and their drift-diffusion limits,
Monatsh. Math., 142 (2004), 123–141, URL http://link.springer.com/chapter/10.1007/978-3-7091-0609-9_10.
doi: 10.1007/s00605-004-0234-7.
|
[9]
|
R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston
J. Math, 17 (1991), 603–635, URL https://www.math.uh.edu/~hjm/v017n4/0603CURTO.pdf.
|
[10]
|
B. Dubroca, M. Frank, A. Klar and G. Thömmes, Half space moment approximation to the
radiative heat transfer equations, ZAMM - Journal of Applied Mathematics and Mechanics
/ Zeitschrift für Angewandte Mathematik und Mechanik, 83 (2003), 853–858.
doi: 10.1002/zamm.200310055.
|
[11]
|
B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris Ser. Ⅰ, 329 (1999), 915-920.
doi: 10.1016/S0764-4442(00)87499-6.
|
[12]
|
B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations, Journal
of Computational Physics, 180 (2002), 584–596, URL http://www.sciencedirect.com/science/article/pii/S0021999102971068.
doi: 10.1006/jcph.2002.7106.
|
[13]
|
A. S. Eddington,
The Internal Constitution of the Stars, Dover, 1926.
|
[14]
|
I. Filippidis, fig2u3d, URL https://de.mathworks.com/matlabcentral/fileexchange/37640-export-figure-to-3d-interactive-pdf.
|
[15]
|
M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative
heat transfer, Journal of Computational Physics, 218 (2006), 1–18, URL http://www.sciencedirect.com/science/article/pii/S002199910600057X.
doi: 10.1016/j.jcp.2006.01.038.
|
[16]
|
M. Frank, C. Hauck and E. Olbrant, Perturbed, entropy-based closure for radiative transfer,
Kinetic and Related Models, 6 (2013), 557–587, URL http://www.osti.gov/scitech/biblio/1093718.
doi: 10.3934/krm.2013.6.557.
|
[17]
|
M. Frank, H. Hensel and A. Klar, A fast and accurate moment method for the Fokker-Planck
equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics,
67 (2007), 582–603, URL http://epubs.siam.org/doi/abs/10.1137/06065547X.
doi: 10.1137/06065547X.
|
[18]
|
E. M. Gelbard, Simplified spherical harmonics equations and their use in shielding problems, Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961.
|
[19]
|
K. P. Hadeler, Reaction transport equations in biological modeling, in Mathematical and Computer Modelling, 31 (2000), 75–81.
doi: 10.1016/S0895-7177(00)00024-8.
|
[20]
|
C. D. Hauck, High-order entropy-based closures for linear transport in slab geometry, Communications in Mathematical Sciences, 9 (2011), 187–205, URL http://www.ki-net.umd.edu/pubs/files/FRG-2010-Hauck-Cory.entropy{_}kinetic.pdf.
doi: 10.4310/CMS.2011.v9.n1.a9.
|
[21]
|
H. Hensel, R. Iza-Teran and N. Siedow, Deterministic model for dose calculation in photon
radiotherapy, Physics in Medicine and Biology, 51 (2006), 675–693, URL http://www.ncbi.nlm.nih.gov/pubmed/16424588.
doi: 10.1088/0031-9155/51/3/013.
|
[22]
|
T. Hillen and K. J. Painter, Transport and anisotropic diffusion models for movement in oriented habitats, Lecture Notes in Mathematics, 2071 (2013), 177-222.
doi: 10.1007/978-3-642-35497-7_7.
|
[23]
|
J. H. Jeans, The equations of radiative transfer of energy, Monthly Notices Royal Astronomical Society, 78 (1917), 28-36.
doi: 10.1093/mnras/78.1.28.
|
[24]
|
M. Junk, Maximum entropy for reduced moment problems, Math. Meth. Mod. Appl. Sci., 10 (2000), 1001-1025.
doi: 10.1142/S0218202500000513.
|
[25]
|
D. S. Kershaw, Flux limiting nature's own way: A new method for numerical solution of the transport equation,
Lawrence Livermore National Laboratory, UCRL-78378, URL http://www.osti.gov/bridge/product.biblio.jsp?osti{_}id=104974.
|
[26]
|
C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021–1065, URL http://link.springer.com/article/10.1007/BF02179552.
doi: 10.1007/BF02179552.
|
[27]
|
C. D. Levermore, Moment closure hierarchies for the Boltzmann-Poisson equation, VLSI
Design, 6 (1998), 97–101, URL http://www.hindawi.com/journals/vlsi/1998/039370/abs/.
doi: 10.1155/1998/39370.
|
[28]
|
E. E. Lewis and J. W. F. Miller,
Computational Methods in Neutron Transport, John Wiley and Sons, New York, 1984.
|
[29]
|
MATLAB,
version 9. 1. 0. 441655 (R2016b), The MathWorks Inc., Natick, Massachusetts, 2015.
|
[30]
|
G. N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 541-545.
doi: 10.1016/0022-4073(78)90024-9.
|
[31]
|
P. Monreal,
Moment Realizability and Kershaw Closures in Radiative Transfer, PhD thesis, TU Aachen, 2012.
|
[32]
|
P. Monreal and M. Frank, Higher order minimum entropy approximations in radiative transfer,
arXiv preprint, arXiv: 0812.3063, 1–18, URL http://arXiv.org/abs/0812.3063.
|
[33]
|
G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Mod. Meth. Appl. Sci., 2 (1992), 21-36.
doi: 10.1142/S021820259200003X.
|
[34]
|
F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with Lipschitz-continuous source terms,
arXiv preprint, URL http://arXiv.org/abs/1611.01314.
|
[35]
|
F. Schneider, Kershaw closures for linear transport equations in slab geometry Ⅰ: Model derivation, Journal of Computational Physics, 322 (2016), 905–919, URL http://arXiv.org/abs/1511.02714.
doi: 10.1016/j.jcp.2016.02.080.
|
[36]
|
F. Schneider, Kershaw closures for linear transport equations in slab geometry Ⅱ: high-order
realizability-preserving discontinuous-Galerkin schemes, Journal of Computational Physics,
322 (2016), 920–935, URL http://arXiv.org/abs/1602.02590.
doi: 10.1016/j.jcp.2016.07.014.
|
[37]
|
F. Schneider,
Moment Models in Radiation Transport Equations, Mathematik edition, Dr. Hut Verlag, 2016.
|
[38]
|
F. Schneider, G. W. Alldredge, M. Frank and A. Klar, Higher order mixed-moment approximations for the fokker–planck equation in one space dimension, SIAM Journal on Applied Mathematics, 74 (2014), 1087–1114, URL http://epubs.siam.org/doi/abs/10.1137/130934210.
doi: 10.1137/130934210.
|
[39]
|
F. Schneider, J. Kall and G. Alldredge, A realizability-preserving high-order kinetic scheme
using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry, Kinetic and Related Models, 9 (2016), 193–215, URL http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11817.
doi: 10.3934/krm.2016.9.193.
|
[40]
|
F. Schneider, J. Kall and A. Roth, First-order quarter- and mixed-moment realizability theory
and Kershaw closures for a Fokker-Planck equation in two space dimensions, Kinetic and
Related Models, 10 (2017), 1127–1161, URL http://arXiv.org/abs/1509.02344.
doi: 10.3934/krm.2017044.
|
[41]
|
D. Wright, M. Frank and A. Klar, The minimum entropy approximation to the radiative transfer equation, Proc. Symp. Appl. Math., 67 (2009), 987-996.
doi: 10.1090/psapm/067.2/2605294.
|