December  2018, 11(6): 1277-1299. doi: 10.3934/krm.2018050

Lagrangian solutions to the Vlasov-Poisson system with a point charge

1. 

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland

2. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

* Corresponding author: Chiara Saffirio

Received  May 2017 Revised  November 2017 Published  June 2018

We consider the Cauchy problem for the repulsive Vlasov-Poisson system in the three dimensional space, where the initial datum is the sum of a diffuse density, assumed to be bounded and integrable, and a point charge. Under some decay assumptions for the diffuse density close to the point charge, under bounds on the total energy, and assuming that the initial total diffuse charge is strictly less than one, we prove existence of global Lagrangian solutions. Our result extends the Eulerian theory of [17], proving that solutions are transported by the flow trajectories. The proof is based on the ODE theory developed in [8] in the setting of vector fields with anisotropic regularity, where some components of the gradient of the vector field is a singular integral of a measure.

Citation: Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[2]

L. AmbrosioM. Colombo and A. Figalli, Existence and uniqueness of maximal regular flows for non-smooth vector fields, Arch. Rational Mech. Anal., 218 (2015), 1043-1081.  doi: 10.1007/s00205-015-0875-9.  Google Scholar

[3]

L. AmbrosioM. Colombo and A. Figalli, On the Lagrangian structure of transport equations: The Vlasov-Poisson system, Duke Math. J., 166 (2017), 3505-3568.  doi: 10.1215/00127094-2017-0032.  Google Scholar

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244.  doi: 10.1017/S0308210513000085.  Google Scholar

[5]

A. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations, U. S. S. R. Comput. Math. Math. Phys., 15 (1975), 136-147,276.   Google Scholar

[6]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.  doi: 10.1016/S0294-1449(16)30405-X.  Google Scholar

[7]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the Vlasov-Poisson system with $L^1$ density, J. Differential Equations, 260 (2016), 3576-3597.  doi: 10.1016/j.jde.2015.10.041.  Google Scholar

[8]

A. BohunF. Bouchut and G. Crippa, Lagrangian flows for vector fields with anisotropic regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1409-1429.  doi: 10.1016/j.anihpc.2015.05.005.  Google Scholar

[9]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the 2D Euler system with $L^1$ vorticity and infinite energy, Nonlinear Analysis: Theory, Methods & Applications, 132 (2016), 160-172.  doi: 10.1016/j.na.2015.11.004.  Google Scholar

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282.  doi: 10.1142/S0219891613500100.  Google Scholar

[11]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinet. Relat. Models, 3 (2010), 241-254.  doi: 10.3934/krm.2010.3.241.  Google Scholar

[12]

S. CaprinoC. MarchioroE. Miot and M. Pulvirenti, On the 2D attractive plasma-charge model, Comm. Partial Differential Equations, 37 (2012), 1237-1272.  doi: 10.1080/03605302.2011.653032.  Google Scholar

[13]

F. Castella, Propagation of space moments in the Vlasov-Poisson Equation and further results, Ann. Inst. Henri Poincaré, 16 (1999), 503-533.  doi: 10.1016/S0294-1449(99)80026-2.  Google Scholar

[14]

Z. Chen and X. Zhang, Sub-linear estimate of large velocity in a collisionless plasma, Commun. Math. Sciences, 12 (2014), 279-291.  doi: 10.4310/CMS.2014.v12.n2.a4.  Google Scholar

[15]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.  doi: 10.1515/CRELLE.2008.016.  Google Scholar

[16]

G. CrippaM. C. Lopes FilhoE. Miot and H. J. Nussenzveig Lopes, Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., 36 (2016), 2405-2417.  doi: 10.3934/dcds.2016.36.2405.  Google Scholar

[17]

L. DesvillettesE. Miot and C. Saffirio, Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 32 (2015), 373-400.  doi: 10.1016/j.anihpc.2014.01.001.  Google Scholar

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport equations and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.  Google Scholar

[20]

L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, Third Edition, Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

T. Holding and E. Miot, Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces, accepted for publication in Commun. Contemp. Math., arXiv: 1703.03046v1. Google Scholar

[22]

S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194.   Google Scholar

[23]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[24]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.  doi: 10.1016/j.matpur.2006.01.005.  Google Scholar

[25]

C. MarchioroE. Miot and M. Pulvirenti, The Cauchy problem for the $3-D$ Vlasov-Poisson system with point charges, Arch. Ration. Mech. Anal., 201 (2011), 1-26.  doi: 10.1007/s00205-010-0388-5.  Google Scholar

[26]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Commun. Math. Phys., 345 (2016), 469-482.  doi: 10.1007/s00220-016-2707-7.  Google Scholar

[27]

S. Okabe and T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation, Osaka J. Math., 15 (1978), 245-261.   Google Scholar

[28]

K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[29]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equations, 16 (1991), 1313-1335.  doi: 10.1080/03605309108820801.  Google Scholar

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[31]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, J. Math. Anal. Appl., 176 (1996), 76-91.  doi: 10.1006/jmaa.1993.1200.  Google Scholar

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[2]

L. AmbrosioM. Colombo and A. Figalli, Existence and uniqueness of maximal regular flows for non-smooth vector fields, Arch. Rational Mech. Anal., 218 (2015), 1043-1081.  doi: 10.1007/s00205-015-0875-9.  Google Scholar

[3]

L. AmbrosioM. Colombo and A. Figalli, On the Lagrangian structure of transport equations: The Vlasov-Poisson system, Duke Math. J., 166 (2017), 3505-3568.  doi: 10.1215/00127094-2017-0032.  Google Scholar

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244.  doi: 10.1017/S0308210513000085.  Google Scholar

[5]

A. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations, U. S. S. R. Comput. Math. Math. Phys., 15 (1975), 136-147,276.   Google Scholar

[6]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.  doi: 10.1016/S0294-1449(16)30405-X.  Google Scholar

[7]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the Vlasov-Poisson system with $L^1$ density, J. Differential Equations, 260 (2016), 3576-3597.  doi: 10.1016/j.jde.2015.10.041.  Google Scholar

[8]

A. BohunF. Bouchut and G. Crippa, Lagrangian flows for vector fields with anisotropic regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1409-1429.  doi: 10.1016/j.anihpc.2015.05.005.  Google Scholar

[9]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the 2D Euler system with $L^1$ vorticity and infinite energy, Nonlinear Analysis: Theory, Methods & Applications, 132 (2016), 160-172.  doi: 10.1016/j.na.2015.11.004.  Google Scholar

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282.  doi: 10.1142/S0219891613500100.  Google Scholar

[11]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinet. Relat. Models, 3 (2010), 241-254.  doi: 10.3934/krm.2010.3.241.  Google Scholar

[12]

S. CaprinoC. MarchioroE. Miot and M. Pulvirenti, On the 2D attractive plasma-charge model, Comm. Partial Differential Equations, 37 (2012), 1237-1272.  doi: 10.1080/03605302.2011.653032.  Google Scholar

[13]

F. Castella, Propagation of space moments in the Vlasov-Poisson Equation and further results, Ann. Inst. Henri Poincaré, 16 (1999), 503-533.  doi: 10.1016/S0294-1449(99)80026-2.  Google Scholar

[14]

Z. Chen and X. Zhang, Sub-linear estimate of large velocity in a collisionless plasma, Commun. Math. Sciences, 12 (2014), 279-291.  doi: 10.4310/CMS.2014.v12.n2.a4.  Google Scholar

[15]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.  doi: 10.1515/CRELLE.2008.016.  Google Scholar

[16]

G. CrippaM. C. Lopes FilhoE. Miot and H. J. Nussenzveig Lopes, Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., 36 (2016), 2405-2417.  doi: 10.3934/dcds.2016.36.2405.  Google Scholar

[17]

L. DesvillettesE. Miot and C. Saffirio, Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 32 (2015), 373-400.  doi: 10.1016/j.anihpc.2014.01.001.  Google Scholar

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport equations and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.  Google Scholar

[20]

L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, Third Edition, Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[21]

T. Holding and E. Miot, Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces, accepted for publication in Commun. Contemp. Math., arXiv: 1703.03046v1. Google Scholar

[22]

S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194.   Google Scholar

[23]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[24]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.  doi: 10.1016/j.matpur.2006.01.005.  Google Scholar

[25]

C. MarchioroE. Miot and M. Pulvirenti, The Cauchy problem for the $3-D$ Vlasov-Poisson system with point charges, Arch. Ration. Mech. Anal., 201 (2011), 1-26.  doi: 10.1007/s00205-010-0388-5.  Google Scholar

[26]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Commun. Math. Phys., 345 (2016), 469-482.  doi: 10.1007/s00220-016-2707-7.  Google Scholar

[27]

S. Okabe and T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation, Osaka J. Math., 15 (1978), 245-261.   Google Scholar

[28]

K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[29]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equations, 16 (1991), 1313-1335.  doi: 10.1080/03605309108820801.  Google Scholar

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[31]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, J. Math. Anal. Appl., 176 (1996), 76-91.  doi: 10.1006/jmaa.1993.1200.  Google Scholar

[1]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[2]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (102)
  • HTML views (121)
  • Cited by (0)

[Back to Top]