December  2018, 11(6): 1333-1358. doi: 10.3934/krm.2018052

A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches

Department of Mathematics, University of Mannheim, 68131 Mannheim, Germany

* Corresponding author: S. Göttlich

Received  March 2017 Revised  December 2017 Published  June 2018

We investigate a stochastic model hierarchy for pedestrian flow. Starting from a microscopic social force model, where the pedestrians switch randomly between the two states stop-or-go, we derive an associated macroscopic model of conservation law type. Therefore we use a kinetic mean-field equation and introduce a new problem-oriented closure function. Numerical experiments are presented to compare the above models and to show their similarities.

Citation: Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052
References:
[1]

D. ArmbrusterS. Martin and A. Thatcher, Elastic and inelastic collisions of swarms, Physica D: Nonlinear Phenomena, 344 (2017), 45-57.  doi: 10.1016/j.physd.2016.11.008.  Google Scholar

[2]

D. ArmbrusterS. Motsch and A. Thatcher, Swarming in bounded domains, Physica D: Nonlinear Phenomena, 344 (2017), 58-67.  doi: 10.1016/j.physd.2016.11.009.  Google Scholar

[3]

H. Bauer, Probability Theory, vol. 23 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1996, Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author. doi: 10.1515/9783110814668.  Google Scholar

[4]

N. BellomoC. Bianca and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, S$\vec{\rm e}$MA J., 54 (2011), 25-46.   Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[6]

L. ChenS. Göttlich and Q. Yin, Mean field limit and propagation of chaos for a pedestrian flow model, Journal of Statistical Physics, 166 (2017), 211-229.  doi: 10.1007/s10955-016-1679-5.  Google Scholar

[7]

A. ChertockA. KurganovA. Polizzi and I. Timofeyev, Pedestrian flow models with slowdown interactions, Math. Models Methods Appl. Sci., 24 (2014), 249-275.  doi: 10.1142/S0218202513400083.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, vol. 12 of MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

P. DegondC. Appert-RollandM. MoussaïdJ. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.  doi: 10.1007/s10955-013-0805-x.  Google Scholar

[10]

P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.  doi: 10.1137/060674302.  Google Scholar

[11]

P. DegondC. Appert-RollandJ. Pettré and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.  doi: 10.3934/krm.2013.6.809.  Google Scholar

[12]

G. Dimarco and S. Motsch, Self-alignment driven by jump processes: Macroscopic limit and numerical investigation, Math. Models Methods Appl. Sci., 26 (2016), 1385-1410.  doi: 10.1142/S0218202516500330.  Google Scholar

[13]

R. EtikyalaS. GöttlichA. Klar and S. Tiwari, Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci., 24 (2014), 2503-2523.  doi: 10.1142/S0218202514500274.  Google Scholar

[14]

I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes. Ⅱ, Classics in Mathematics, Springer-Verlag, Berlin, 2004, Translated from the Russian by S. Kotz, Reprint of the 1975 edition. doi: 10.1007/978-3-642-61921-2.  Google Scholar

[15]

D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415, arXiv: cond-mat/9805213.  Google Scholar

[16]

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, 51 (1998), 4282-4286, arXiv: cond-mat/9805244. doi: 10.1103/PhysRevE.51.4282.  Google Scholar

[17]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[18]

P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 651-672.  doi: 10.1016/S0294-1449(00)00118-9.  Google Scholar

[19]

P.-E. Jabin, Various levels of models for aerosols, Math. Models Methods Appl. Sci., 12 (2002), 903-919.  doi: 10.1142/S0218202502001957.  Google Scholar

[20]

A. Jüngel, Transport Equations for Semiconductors, vol. 773 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[21]

A. KlarF. Schneider and O. Tse, Approximate models for stochastic dynamic systems with velocities on the sphere and associated fokker-planck equations, Kinetic and Related Models, 7 (2014), 509-529.  doi: 10.3934/krm.2014.7.509.  Google Scholar

[22]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.  Google Scholar

[23]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.  doi: 10.1007/s00205-010-0366-y.  Google Scholar

[24]

B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.  doi: 10.1007/s00161-009-0100-x.  Google Scholar

[25]

M. Schultz, Stochastic transition model for pedestrian dynamics, in Pedestrian and Evacuation Dynamics 2012, Springer International Publishing, (2013), 971-985, arXiv: 1210.5554. doi: 10.1007/978-3-319-02447-9_81.  Google Scholar

[26]

A. Tordeux and A. Schadschneider, A stochastic optimal velocity model for pedestrian flow, in Parallel Processing and Applied Mathematics, Springer International Publishing, 9574 (2016), 528-538. doi: 10.1007/978-3-319-32152-3_49.  Google Scholar

[27]

A. Tordeux and A. Schadschneider, White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 185101, 16pp. doi: 10.1088/1751-8113/49/18/185101.  Google Scholar

show all references

References:
[1]

D. ArmbrusterS. Martin and A. Thatcher, Elastic and inelastic collisions of swarms, Physica D: Nonlinear Phenomena, 344 (2017), 45-57.  doi: 10.1016/j.physd.2016.11.008.  Google Scholar

[2]

D. ArmbrusterS. Motsch and A. Thatcher, Swarming in bounded domains, Physica D: Nonlinear Phenomena, 344 (2017), 58-67.  doi: 10.1016/j.physd.2016.11.009.  Google Scholar

[3]

H. Bauer, Probability Theory, vol. 23 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1996, Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author. doi: 10.1515/9783110814668.  Google Scholar

[4]

N. BellomoC. Bianca and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, S$\vec{\rm e}$MA J., 54 (2011), 25-46.   Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[6]

L. ChenS. Göttlich and Q. Yin, Mean field limit and propagation of chaos for a pedestrian flow model, Journal of Statistical Physics, 166 (2017), 211-229.  doi: 10.1007/s10955-016-1679-5.  Google Scholar

[7]

A. ChertockA. KurganovA. Polizzi and I. Timofeyev, Pedestrian flow models with slowdown interactions, Math. Models Methods Appl. Sci., 24 (2014), 249-275.  doi: 10.1142/S0218202513400083.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, vol. 12 of MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

P. DegondC. Appert-RollandM. MoussaïdJ. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.  doi: 10.1007/s10955-013-0805-x.  Google Scholar

[10]

P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.  doi: 10.1137/060674302.  Google Scholar

[11]

P. DegondC. Appert-RollandJ. Pettré and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.  doi: 10.3934/krm.2013.6.809.  Google Scholar

[12]

G. Dimarco and S. Motsch, Self-alignment driven by jump processes: Macroscopic limit and numerical investigation, Math. Models Methods Appl. Sci., 26 (2016), 1385-1410.  doi: 10.1142/S0218202516500330.  Google Scholar

[13]

R. EtikyalaS. GöttlichA. Klar and S. Tiwari, Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci., 24 (2014), 2503-2523.  doi: 10.1142/S0218202514500274.  Google Scholar

[14]

I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes. Ⅱ, Classics in Mathematics, Springer-Verlag, Berlin, 2004, Translated from the Russian by S. Kotz, Reprint of the 1975 edition. doi: 10.1007/978-3-642-61921-2.  Google Scholar

[15]

D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415, arXiv: cond-mat/9805213.  Google Scholar

[16]

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, 51 (1998), 4282-4286, arXiv: cond-mat/9805244. doi: 10.1103/PhysRevE.51.4282.  Google Scholar

[17]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[18]

P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 651-672.  doi: 10.1016/S0294-1449(00)00118-9.  Google Scholar

[19]

P.-E. Jabin, Various levels of models for aerosols, Math. Models Methods Appl. Sci., 12 (2002), 903-919.  doi: 10.1142/S0218202502001957.  Google Scholar

[20]

A. Jüngel, Transport Equations for Semiconductors, vol. 773 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[21]

A. KlarF. Schneider and O. Tse, Approximate models for stochastic dynamic systems with velocities on the sphere and associated fokker-planck equations, Kinetic and Related Models, 7 (2014), 509-529.  doi: 10.3934/krm.2014.7.509.  Google Scholar

[22]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.  Google Scholar

[23]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.  doi: 10.1007/s00205-010-0366-y.  Google Scholar

[24]

B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.  doi: 10.1007/s00161-009-0100-x.  Google Scholar

[25]

M. Schultz, Stochastic transition model for pedestrian dynamics, in Pedestrian and Evacuation Dynamics 2012, Springer International Publishing, (2013), 971-985, arXiv: 1210.5554. doi: 10.1007/978-3-319-02447-9_81.  Google Scholar

[26]

A. Tordeux and A. Schadschneider, A stochastic optimal velocity model for pedestrian flow, in Parallel Processing and Applied Mathematics, Springer International Publishing, 9574 (2016), 528-538. doi: 10.1007/978-3-319-32152-3_49.  Google Scholar

[27]

A. Tordeux and A. Schadschneider, White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 185101, 16pp. doi: 10.1088/1751-8113/49/18/185101.  Google Scholar

Figure 1.  Velocity vector at the boundary
Figure 2.  Overview of the deterministic and stochastic model hierarchy equations
Figure 3.  Densities at different times: $u_{ij}^{\text{Mic}, n}$ for the microscopic and $u_{ij}^{\text{Mac}, n}$ for the macroscopic model
Figure 4.  Mass balances at $x = -1$ and $x = 0$
Figure 5.  $L^1$ and $L^2$ error
Figure 6.  Densities for $\lambda_1$ at different times: $u_{ij}^{\text{Mic}, n}$ for the microscopic and $u_{ij}^{\text{Mac}, n}$ for the macroscopic model
Figure 7.  Densities for $\lambda_2$ at different times: $u_{ij}^{\text{Mic}, n}$ for the microscopic and $u_{ij}^{\text{Mac}, n}$ for the macroscopic model
Figure 8.  Mass balances at $x = 1$
Figure 9.  $L^1$ and $L^2$ errors
Table 1.  Numerical error and EOOC for the first example
$ \mathsf{err} $ EOOC
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.3251 -
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.1755 0.8897
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.0717 1.2919
$ \mathsf{err} $ EOOC
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.3251 -
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.1755 0.8897
$\Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.0717 1.2919
Table 2.  Numerical error and EOOC for the second example with rate function $\lambda_1$
$\mathsf{err} $ EOOC
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.4457 -
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.2215 1.0085
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.0889 1.3170
$\mathsf{err} $ EOOC
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.4457 -
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.2215 1.0085
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.0889 1.3170
Table 3.  Numerical error and EOOC for the second example with rate function $\lambda_2$
$ \mathsf{err} $ EOOC
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.5203 -
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.2873 0.8567
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.1153 1.3176
$ \mathsf{err} $ EOOC
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{5}\;$ 0.5203 -
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{10}\;$ 0.2873 0.8567
$\displaystyle \Delta x = {}^{1}\!\!\diagup\!\!{}_{20}\;$ 0.1153 1.3176
[1]

Theresa Lange, Wilhelm Stannat. Mean field limit of ensemble square root filters - discrete and continuous time. Foundations of Data Science, 2021  doi: 10.3934/fods.2021003

[2]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[3]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[4]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[5]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[6]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[7]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[8]

Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007

[9]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[13]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[14]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[15]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[16]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[18]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (264)
  • HTML views (163)
  • Cited by (1)

Other articles
by authors

[Back to Top]