-
Previous Article
Numerical study of an anisotropic Vlasov equation arising in plasma physics
- KRM Home
- This Issue
-
Next Article
On the convergence to critical scaling profiles in submonolayer deposition models
A general consistent BGK model for gas mixtures
1. | Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia |
2. | Dip. di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy |
3. | Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia |
We propose a kinetic model of BGK type for a gas mixture of an arbitrary number of species with arbitrary collision law. The model features the same structure of the corresponding Boltzmann equations and fulfils all consistency requirements concerning conservation laws, equilibria, and H-theorem. Comparison is made to existing BGK models for mixtures, and the achieved improvements are commented on. Finally, possible application to the case of Coulomb interaction is briefly discussed.
References:
[1] |
P. Andries, K. Aoki and B. Perthame,
A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.
doi: 10.1023/A:1014033703134. |
[2] |
P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. Google Scholar |
[3] |
M. Bisi and M. J. Cáceres,
A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.
doi: 10.4310/CMS.2016.v14.n2.a1. |
[4] |
M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9).
doi: 10.1103/PhysRevE.81.036327. |
[5] |
S. Brull,
An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.
doi: 10.4310/CMS.2015.v13.n1.a1. |
[6] |
S. Brull and J. Schneider,
On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.
doi: 10.1007/s00161-009-0095-3. |
[7] |
S. Brull, V. Pavan and J. Schneider,
Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.
doi: 10.1016/j.euromechflu.2011.12.003. |
[8] |
C. Cercignani,
The Boltzmann Equation and its Applications, Springer, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[9] |
V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383. Google Scholar |
[10] |
E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940. Google Scholar |
[11] |
J. M. Greene,
Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.
doi: 10.1063/1.1694254. |
[12] |
M. Groppi, S. Rjasanow and G. Spiga,
A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.
doi: 10.1088/1742-5468/2009/10/P10010. |
[13] |
M. Groppi and G. Spiga,
A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.
doi: 10.1063/1.1808651. |
[14] |
E. P. Gross and M. Krook,
Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.
doi: 10.1103/PhysRev.102.593. |
[15] |
J. R. Haack, C. D. Hauck and M. S. Murillo,
A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.
doi: 10.1007/s10955-017-1824-9. |
[16] |
J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar |
[17] |
B. B. Hamel,
Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.
doi: 10.1063/1.1761239. |
[18] |
C. Klingenberg, M. Pirner and G. Puppo,
A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.
doi: 10.3934/krm.2017017. |
[19] |
M. N. Kogan,
Rarefied Gas Dynamics, Plenum Press, New York, 1969.
doi: 10.1007/978-1-4899-6381-9. |
[20] |
G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp.
doi: 10.1063/1.2185691. |
[21] |
L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164. Google Scholar |
[22] |
L. D. Landau and E. M. Lifshitz,
Mechanics, Pergamon Press, Oxford, 1969. |
[23] |
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar |
[24] |
T. F. Morse,
Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.
doi: 10.1063/1.1711112. |
[25] |
L. Sirovich,
Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.
doi: 10.1063/1.1706706. |
[26] |
P. Welander,
On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.
|
show all references
References:
[1] |
P. Andries, K. Aoki and B. Perthame,
A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.
doi: 10.1023/A:1014033703134. |
[2] |
P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. Google Scholar |
[3] |
M. Bisi and M. J. Cáceres,
A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.
doi: 10.4310/CMS.2016.v14.n2.a1. |
[4] |
M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9).
doi: 10.1103/PhysRevE.81.036327. |
[5] |
S. Brull,
An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.
doi: 10.4310/CMS.2015.v13.n1.a1. |
[6] |
S. Brull and J. Schneider,
On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.
doi: 10.1007/s00161-009-0095-3. |
[7] |
S. Brull, V. Pavan and J. Schneider,
Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.
doi: 10.1016/j.euromechflu.2011.12.003. |
[8] |
C. Cercignani,
The Boltzmann Equation and its Applications, Springer, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[9] |
V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383. Google Scholar |
[10] |
E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940. Google Scholar |
[11] |
J. M. Greene,
Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.
doi: 10.1063/1.1694254. |
[12] |
M. Groppi, S. Rjasanow and G. Spiga,
A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.
doi: 10.1088/1742-5468/2009/10/P10010. |
[13] |
M. Groppi and G. Spiga,
A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.
doi: 10.1063/1.1808651. |
[14] |
E. P. Gross and M. Krook,
Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.
doi: 10.1103/PhysRev.102.593. |
[15] |
J. R. Haack, C. D. Hauck and M. S. Murillo,
A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.
doi: 10.1007/s10955-017-1824-9. |
[16] |
J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar |
[17] |
B. B. Hamel,
Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.
doi: 10.1063/1.1761239. |
[18] |
C. Klingenberg, M. Pirner and G. Puppo,
A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.
doi: 10.3934/krm.2017017. |
[19] |
M. N. Kogan,
Rarefied Gas Dynamics, Plenum Press, New York, 1969.
doi: 10.1007/978-1-4899-6381-9. |
[20] |
G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp.
doi: 10.1063/1.2185691. |
[21] |
L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164. Google Scholar |
[22] |
L. D. Landau and E. M. Lifshitz,
Mechanics, Pergamon Press, Oxford, 1969. |
[23] |
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar |
[24] |
T. F. Morse,
Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.
doi: 10.1063/1.1711112. |
[25] |
L. Sirovich,
Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.
doi: 10.1063/1.1706706. |
[26] |
P. Welander,
On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.
|
[1] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[2] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[3] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[4] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[5] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[6] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[7] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[8] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[9] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[10] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[11] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[12] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[13] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[14] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[15] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[16] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[17] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[18] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[19] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[20] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]