December  2018, 11(6): 1377-1393. doi: 10.3934/krm.2018054

A general consistent BGK model for gas mixtures

1. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

2. 

Dip. di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

3. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

* Corresponding author: G. Spiga

Received  September 2017 Revised  December 2017 Published  June 2018

We propose a kinetic model of BGK type for a gas mixture of an arbitrary number of species with arbitrary collision law. The model features the same structure of the corresponding Boltzmann equations and fulfils all consistency requirements concerning conservation laws, equilibria, and H-theorem. Comparison is made to existing BGK models for mixtures, and the achieved improvements are commented on. Finally, possible application to the case of Coulomb interaction is briefly discussed.

Citation: Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054
References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.   Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.  doi: 10.4310/CMS.2016.v14.n2.a1.  Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.  doi: 10.4310/CMS.2015.v13.n1.a1.  Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.  doi: 10.1007/s00161-009-0095-3.  Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.  doi: 10.1016/j.euromechflu.2011.12.003.  Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383.   Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940.   Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.  doi: 10.1063/1.1694254.  Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.  doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.  doi: 10.1103/PhysRev.102.593.  Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.  doi: 10.1063/1.1761239.  Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691.  Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164.   Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969.  Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.  doi: 10.1063/1.1711112.  Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.  doi: 10.1063/1.1706706.  Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.   Google Scholar

show all references

References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.   Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.  doi: 10.4310/CMS.2016.v14.n2.a1.  Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.  doi: 10.4310/CMS.2015.v13.n1.a1.  Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.  doi: 10.1007/s00161-009-0095-3.  Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.  doi: 10.1016/j.euromechflu.2011.12.003.  Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383.   Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940.   Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.  doi: 10.1063/1.1694254.  Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.  doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.  doi: 10.1103/PhysRev.102.593.  Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.  doi: 10.1063/1.1761239.  Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691.  Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164.   Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969.  Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.  doi: 10.1063/1.1711112.  Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.  doi: 10.1063/1.1706706.  Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.   Google Scholar

[1]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[2]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[3]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[4]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[5]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[9]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[10]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[11]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[12]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[13]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[17]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (300)
  • HTML views (230)
  • Cited by (11)

[Back to Top]