December  2018, 11(6): 1377-1393. doi: 10.3934/krm.2018054

A general consistent BGK model for gas mixtures

1. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

2. 

Dip. di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

3. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

* Corresponding author: G. Spiga

Received  September 2017 Revised  December 2017 Published  June 2018

We propose a kinetic model of BGK type for a gas mixture of an arbitrary number of species with arbitrary collision law. The model features the same structure of the corresponding Boltzmann equations and fulfils all consistency requirements concerning conservation laws, equilibria, and H-theorem. Comparison is made to existing BGK models for mixtures, and the achieved improvements are commented on. Finally, possible application to the case of Coulomb interaction is briefly discussed.

Citation: Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054
References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.   Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.  doi: 10.4310/CMS.2016.v14.n2.a1.  Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.  doi: 10.4310/CMS.2015.v13.n1.a1.  Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.  doi: 10.1007/s00161-009-0095-3.  Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.  doi: 10.1016/j.euromechflu.2011.12.003.  Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383.   Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940.   Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.  doi: 10.1063/1.1694254.  Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.  doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.  doi: 10.1103/PhysRev.102.593.  Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.  doi: 10.1063/1.1761239.  Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691.  Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164.   Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969.  Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.  doi: 10.1063/1.1711112.  Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.  doi: 10.1063/1.1706706.  Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.   Google Scholar

show all references

References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.   Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325.  doi: 10.4310/CMS.2016.v14.n2.a1.  Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13.  doi: 10.4310/CMS.2015.v13.n1.a1.  Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508.  doi: 10.1007/s00161-009-0095-3.  Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86.  doi: 10.1016/j.euromechflu.2011.12.003.  Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383.   Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940.   Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023.  doi: 10.1063/1.1694254.  Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010.  doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604.  doi: 10.1103/PhysRev.102.593.  Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14). Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425.  doi: 10.1063/1.1761239.  Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691.  Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164.   Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969.  Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981. Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013.  doi: 10.1063/1.1711112.  Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918.  doi: 10.1063/1.1706706.  Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533.   Google Scholar

[1]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[2]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[4]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[5]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (229)
  • HTML views (227)
  • Cited by (11)

[Back to Top]