Goal of this paper is to investigate several numerical schemes for the resolution of two anisotropic Vlasov equations. These two toy-models are obtained from a kinetic description of a tokamak plasma confined by strong magnetic fields. The simplicity of our toy-models permits to better understand the features of each scheme, in particular to investigate their asymptotic-preserving properties, in the aim to choose then the most adequate numerical scheme for upcoming, more realistic simulations.
Citation: |
Figure 7.
Evolution of the
[1] |
M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, Journal of Differential Equations, 249 (2010), 1620-1663.
doi: 10.1016/j.jde.2010.07.010.![]() ![]() |
[2] |
F. F Chen,
Plasma Physics and Controlled Fusion, 3rd edition, Springer-Verlag, New-York, 2008.
![]() |
[3] |
N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, Kinetic Related Models, 4 (2011), 441-477.
doi: 10.3934/krm.2011.4.441.![]() ![]() ![]() |
[4] |
N. Crouseilles, M. Lemou and F. Méhats, Asymptotic-Preserving schemes for oscillatory Vlasov-Poisson equations, Journal of Computational Physics, 248 (2013), 287-308.
doi: 10.1016/j.jcp.2013.04.022.![]() ![]() ![]() |
[5] |
A. De Cecco, C. Negulescu and S. Possanner, Asymptotic transition from kinetic to adiabatic electrons along magnetic field lines, SIAM MMS (Multiscale Model. Simul.), 15 (2017), 309-338.
doi: 10.1137/15M1043686.![]() ![]() ![]() |
[6] |
P. Degond, F. Deluzet, A. Lozinski, J. Narski and C. Negulescu, Duality based asymptotic-preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences, 10 (2012), 1-31.
doi: 10.4310/CMS.2012.v10.n1.a2.![]() ![]() ![]() |
[7] |
P. Degond, A. Lozinski, J. Narski and C. Negulescu, An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition, Journal of Computational Physics, 231 (2012), 2724-2740.
doi: 10.1016/j.jcp.2011.11.040.![]() ![]() ![]() |
[8] |
F. Filbet and S. Jin, An Asymptotic Preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Computing, 46 (2011), 204-224.
doi: 10.1007/s10915-010-9394-x.![]() ![]() ![]() |
[9] |
X. Garbet, Y. Idomura, L. Villard and T. Watanabe, Gyrokinetic simulations of turbulent transport, Nuclear Fusion, 50 (2010).
doi: 10.1088/0029-5515/50/4/043002.![]() ![]() |
[10] |
Ph. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model, existence and uniqueness of specific stationary solutions, Kinetic and Related Models, 2 (2009), 707-725.
doi: 10.3934/krm.2009.2.707.![]() ![]() ![]() |
[11] |
R. J. Goldston and P. H. Rutherford,
Plasma Physics, Taylor & Francis Group, Boca Raton, 1995.
![]() |
[12] |
V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, Ph. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, GYSELA, a full-f global gyrokinetic semi-lagrangian code for ITG turbulence simulations, Theory of Fusion Plasmas, 871 (2006), American Institute of Physics Conference Series, 100–111.
![]() |
[13] |
R. D. Hazeltine and J. D. Meiss,
Plasma Confinement, Dover Publications, New York, 2003.
![]() |
[14] |
M. H. Holmes,
Introduction to Numerical Methods in Differential Equations, Springer-Verlag, New York, 2007.
doi: 10.1007/978-0-387-68121-4.![]() ![]() ![]() |
[15] |
S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Rivista di Matematica della Universita di Parma, 3 (2012), 177-216.
![]() ![]() |
[16] |
M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368.
doi: 10.1137/07069479X.![]() ![]() ![]() |
[17] |
R. J. LeVeque,
Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, Philadelphia, 2007.
doi: 10.1137/1.9780898717839.![]() ![]() ![]() |
[18] |
A. Lozinski, J. Narski and C. Negulescu, Highly anisotropic temperature balance equation and its asymptotic-preserving resolution, M2AN (Mathematical Modelling and Numerical Analysis), 48 (2014), 1701-1724.
doi: 10.1051/m2an/2014016.![]() ![]() ![]() |
[19] |
A. J. Majda and A. L. Bertozzi,
Vorticity and Incompressible Flow, Cambridge University Press, 2002.
![]() ![]() |
[20] |
A. Mentrelli and C. Negulescu, Asymptotic-Preserving scheme for highly anisotropic non-linear diffusion equations, Journal of Comp. Phys, 231 (2012), 8229-8245.
doi: 10.1016/j.jcp.2012.08.004.![]() ![]() ![]() |
[21] |
C. Negulescu, Kinetic modelling of strongly magnetized tokamak plasmas with mass disparate particles, the electron Boltzmann relation, submitted.
![]() |
[22] |
C. Negulescu, Asymptotic-Preserving schemes. Modeling, simulation and mathematical analysis of magnetically confined plasmas, Rivista di Matematica della Universita di Parma, 4 (2013), 265-343.
![]() ![]() |
[23] |
L. Trefethen and D. Bau,
Numerical Linear Algebra, SIAM, Philadelphia, 1997.
doi: 10.1137/1.9780898719574.![]() ![]() ![]() |