-
Previous Article
Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density
- KRM Home
- This Issue
- Next Article
Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks
1. | Miami University, Department of Mathematics, 301 S. Patterson Ave., Oxford, OH 45056, USA |
2. | Indiana University, Department of Mathematics, 831 E. Third St., Bloomington, IN 47405, USA |
We construct stable manifolds for a class of singular evolution equations including the steady Boltzmann equation, establishing in the process exponential decay of associated kinetic shock and boundary layers to their limiting equilibrium states. Our analysis is from a classical dynamical systems point of view, but with a number of interesting modifications to accomodate ill-posedness with respect to the Cauchy problem of the underlying evolution equation.
References:
[1] |
A. Abbondandolo and P. Majer,
Ordinary differential operators in Hilbert spaces and Fredholm pairs, Math. Z., 243 (2003), 525-562.
doi: 10.1007/s00209-002-0473-z. |
[2] |
A. Abbondandolo and P. Majer,
Morse homology on Hilbert spaces, Comm. Pure Appl. Math., 54 (2001), 689-760.
doi: 10.1002/cpa.1012. |
[3] |
H. Bart, I. Gohberg and M. A. Kaashoek,
Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators, J. Funct. Anal., 68 (1986), 1-42.
doi: 10.1016/0022-1236(86)90055-8. |
[4] |
G. Boillat and T. Ruggeri,
On the shock structure problem for hyperbolic system of balance laws and convex entropy, Continuum Mechanics and Thermodynamics, 10 (1998), 285-292.
doi: 10.1007/s001610050094. |
[5] |
R. Caflisch and B. Nicolaenko,
Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), 161-194.
doi: 10.1007/BF01206009. |
[6] |
C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. ⅹⅱ+455 pp. ISBN: 0-387-96637-4.
doi: 10.1007/978-1-4612-1039-9. |
[7] |
G. Q. Chen, C. David Levermore and T.-P. Liu,
Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830.
doi: 10.1002/cpa.3160470602. |
[8] |
A. Dressler and W.-A. Yong,
Existence of traveling-wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 182 (2006), 49-75.
doi: 10.1007/s00205-006-0430-9. |
[9] |
R. A. Gardner and K. Zumbrun,
The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855.
doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1. |
[10] |
H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Academic Press, New York, 1 (1963), 26-59. |
[11] |
J. Härterich,
Viscous profiles for traveling waves of scalar balance laws: The canard case, Methods and Applications of Analysis, 10 (2003), 97-117.
doi: 10.4310/MAA.2003.v10.n1.a6. |
[12] |
C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun,
Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206.
doi: 10.1137/09076026X. |
[13] |
Y. Latushkin, A. Pogan and R. Schnaubelt,
Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.
|
[14] |
Y. Latushkin and A. Pogan,
The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306.
doi: 10.1016/j.jde.2008.01.023. |
[15] |
Y. Latushkin and A. Pogan,
The infinite dimensional evans function, J. Funct Anal., 268 (2015), 1509-1586.
doi: 10.1016/j.jfa.2014.11.020. |
[16] |
T. P. Liu and S. H. Yu,
Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2. |
[17] |
T. P. Liu and S. H. Yu,
Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997.
doi: 10.1007/s00205-013-0640-x. |
[18] |
J. Mallet-Paret,
The Fredholm alternative for functional-differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-47.
doi: 10.1023/A:1021889401235. |
[19] |
C. Mascia and K. Zumbrun,
Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., 51 (2002), 773-904.
doi: 10.1512/iumj.2002.51.2212. |
[20] |
C. Mascia and K. Zumbrun,
Spectral stability of weak relaxation shock profiles, Comm. Part. Diff. Eq., 34 (2009), 119-136.
doi: 10.1080/03605300802553971. |
[21] |
C. Mascia and K. Zumbrun,
Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal., 37 (2005), 889-913.
doi: 10.1137/S0036141004435844. |
[22] |
C. Mascia and K. Zumbrun,
Pointwise Green's function bounds for shock profiles with degenerate viscosity, Arch. Ration. Mech. Anal., 169 (2003), 177-263.
doi: 10.1007/s00205-003-0258-5. |
[23] |
C. Mascia and K. Zumbrun,
Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Rat. Mech. Anal., 172 (2004), 93-131.
doi: 10.1007/s00205-003-0293-2. |
[24] |
G. Métivier, T. Texier and K. Zumbrun,
Existence of quasilinear relaxation shock profiles in systems with characteristic velocities, Ann. Fac. Sci. Toulouse Math., 21 (2012), 1-23.
doi: 10.5802/afst.1327. |
[25] |
G. Métivier and K. Zumbrun,
Existence of semilinear relaxation shocks, J. Math. Pures Appl., 92 (2009), 209-231.
doi: 10.1016/j.matpur.2009.05.002. |
[26] |
G. Métivier and K. Zumbrun,
Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.
doi: 10.3934/krm.2009.2.667. |
[27] |
F. Nazarov, private communication. Google Scholar |
[28] |
T. Nguyen, R. Plaza and K. Zumbrun,
Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453.
doi: 10.1016/j.physd.2010.01.011. |
[29] |
D. Peterhof, B. Sandstede and A. Scheel,
Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Diff. Eq., 140 (1997), 266-308.
doi: 10.1006/jdeq.1997.3303. |
[30] |
A. Pogan and A. Scheel,
Instability of spikes in the presence of conservation laws, Z. Angew. Math. Phys., 61 (2010), 979-998.
doi: 10.1007/s00033-010-0058-3. |
[31] |
A. Pogan and A. Scheel,
Layers in the presence of conservation laws, J. Dyn. Diff. Eq., 24 (2012), 249-287.
doi: 10.1007/s10884-012-9248-3. |
[32] |
A. Pogan and K. Zumbrun,
Center manifolds of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Diff Eq., 264 (2018), 6752-6808.
doi: 10.1016/j.jde.2018.01.049. |
[33] |
J. Robbin and D. Salamon,
The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33.
doi: 10.1112/blms/27.1.1. |
[34] |
B. Sandstede, Stability of traveling waves, in: Handbook of Dynamical Systems, vol. 2, NorthHolland, Amsterdam, 2002, 983-1055.
doi: 10.1016/S1874-575X(02)80039-X. |
[35] |
B. Sandstede and A. Scheel,
On the structure of spectra of modulated traveling waves, Math. Nachr., 232 (2001), 39-93.
doi: 10.1002/1522-2616(200112)232:1<39::AID-MANA39>3.0.CO;2-5. |
[36] |
B. Sandstede and A. Scheel,
Relative Morse indices, Fredholm indices, and group velocitie, Discrete Contin. Dyn. Syst. A, 20 (2008), 139-158.
|
[37] |
B. Texier and K. Zumbrun,
Nash-Moser iteration and singular perturbations, Ann. Inst. H. Poincare Anal. Non Lineaire, 28 (2011), 499-527.
doi: 10.1016/j.anihpc.2011.05.001. |
[38] |
K. Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 47 (2001), 307-516. |
[39] |
K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, With an Appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 3 (2004), 311-533. |
[40] |
K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, Hyperbolic Systems of Balance Laws, 229-326, Lecture Notes in Math., 1911, Springer, Berlin, 2007.
doi: 10.1007/978-3-540-72187-1_4. |
[41] |
K. Zumbrun, Stability and dynamics of viscous shock waves, Nonlinear Conservation Laws and Applications, 123-167, IMA Vol. Math. Appl., 153, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9554-4_5. |
[42] |
K. Zumbrun,
L∞ resolvent estimates for steady Boltzmann's equation, Kinet. Relat. Models, 10 (2017), 1255-1257.
doi: 10.3934/krm.2017048. |
[43] |
K. Zumbrun,
Conditional stability of unstable viscous shocks, J. Diff. Eq., 247 (2009), 648-671.
doi: 10.1016/j.jde.2009.02.017. |
[44] |
K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871; Errata, Indiana Univ. Math. J., 51 (2002), 1017-1021
doi: 10.1512/iumj.2002.51.2410. |
[45] |
K. Zumbrun and D. Serre,
Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992.
doi: 10.1512/iumj.1999.48.1765. |
show all references
References:
[1] |
A. Abbondandolo and P. Majer,
Ordinary differential operators in Hilbert spaces and Fredholm pairs, Math. Z., 243 (2003), 525-562.
doi: 10.1007/s00209-002-0473-z. |
[2] |
A. Abbondandolo and P. Majer,
Morse homology on Hilbert spaces, Comm. Pure Appl. Math., 54 (2001), 689-760.
doi: 10.1002/cpa.1012. |
[3] |
H. Bart, I. Gohberg and M. A. Kaashoek,
Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators, J. Funct. Anal., 68 (1986), 1-42.
doi: 10.1016/0022-1236(86)90055-8. |
[4] |
G. Boillat and T. Ruggeri,
On the shock structure problem for hyperbolic system of balance laws and convex entropy, Continuum Mechanics and Thermodynamics, 10 (1998), 285-292.
doi: 10.1007/s001610050094. |
[5] |
R. Caflisch and B. Nicolaenko,
Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), 161-194.
doi: 10.1007/BF01206009. |
[6] |
C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. ⅹⅱ+455 pp. ISBN: 0-387-96637-4.
doi: 10.1007/978-1-4612-1039-9. |
[7] |
G. Q. Chen, C. David Levermore and T.-P. Liu,
Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830.
doi: 10.1002/cpa.3160470602. |
[8] |
A. Dressler and W.-A. Yong,
Existence of traveling-wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 182 (2006), 49-75.
doi: 10.1007/s00205-006-0430-9. |
[9] |
R. A. Gardner and K. Zumbrun,
The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855.
doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1. |
[10] |
H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Academic Press, New York, 1 (1963), 26-59. |
[11] |
J. Härterich,
Viscous profiles for traveling waves of scalar balance laws: The canard case, Methods and Applications of Analysis, 10 (2003), 97-117.
doi: 10.4310/MAA.2003.v10.n1.a6. |
[12] |
C. Lattanzio, C. Mascia, T. Nguyen, R. Plaza and K. Zumbrun,
Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206.
doi: 10.1137/09076026X. |
[13] |
Y. Latushkin, A. Pogan and R. Schnaubelt,
Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.
|
[14] |
Y. Latushkin and A. Pogan,
The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306.
doi: 10.1016/j.jde.2008.01.023. |
[15] |
Y. Latushkin and A. Pogan,
The infinite dimensional evans function, J. Funct Anal., 268 (2015), 1509-1586.
doi: 10.1016/j.jfa.2014.11.020. |
[16] |
T. P. Liu and S. H. Yu,
Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2. |
[17] |
T. P. Liu and S. H. Yu,
Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997.
doi: 10.1007/s00205-013-0640-x. |
[18] |
J. Mallet-Paret,
The Fredholm alternative for functional-differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-47.
doi: 10.1023/A:1021889401235. |
[19] |
C. Mascia and K. Zumbrun,
Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., 51 (2002), 773-904.
doi: 10.1512/iumj.2002.51.2212. |
[20] |
C. Mascia and K. Zumbrun,
Spectral stability of weak relaxation shock profiles, Comm. Part. Diff. Eq., 34 (2009), 119-136.
doi: 10.1080/03605300802553971. |
[21] |
C. Mascia and K. Zumbrun,
Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal., 37 (2005), 889-913.
doi: 10.1137/S0036141004435844. |
[22] |
C. Mascia and K. Zumbrun,
Pointwise Green's function bounds for shock profiles with degenerate viscosity, Arch. Ration. Mech. Anal., 169 (2003), 177-263.
doi: 10.1007/s00205-003-0258-5. |
[23] |
C. Mascia and K. Zumbrun,
Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Rat. Mech. Anal., 172 (2004), 93-131.
doi: 10.1007/s00205-003-0293-2. |
[24] |
G. Métivier, T. Texier and K. Zumbrun,
Existence of quasilinear relaxation shock profiles in systems with characteristic velocities, Ann. Fac. Sci. Toulouse Math., 21 (2012), 1-23.
doi: 10.5802/afst.1327. |
[25] |
G. Métivier and K. Zumbrun,
Existence of semilinear relaxation shocks, J. Math. Pures Appl., 92 (2009), 209-231.
doi: 10.1016/j.matpur.2009.05.002. |
[26] |
G. Métivier and K. Zumbrun,
Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.
doi: 10.3934/krm.2009.2.667. |
[27] |
F. Nazarov, private communication. Google Scholar |
[28] |
T. Nguyen, R. Plaza and K. Zumbrun,
Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453.
doi: 10.1016/j.physd.2010.01.011. |
[29] |
D. Peterhof, B. Sandstede and A. Scheel,
Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Diff. Eq., 140 (1997), 266-308.
doi: 10.1006/jdeq.1997.3303. |
[30] |
A. Pogan and A. Scheel,
Instability of spikes in the presence of conservation laws, Z. Angew. Math. Phys., 61 (2010), 979-998.
doi: 10.1007/s00033-010-0058-3. |
[31] |
A. Pogan and A. Scheel,
Layers in the presence of conservation laws, J. Dyn. Diff. Eq., 24 (2012), 249-287.
doi: 10.1007/s10884-012-9248-3. |
[32] |
A. Pogan and K. Zumbrun,
Center manifolds of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Diff Eq., 264 (2018), 6752-6808.
doi: 10.1016/j.jde.2018.01.049. |
[33] |
J. Robbin and D. Salamon,
The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33.
doi: 10.1112/blms/27.1.1. |
[34] |
B. Sandstede, Stability of traveling waves, in: Handbook of Dynamical Systems, vol. 2, NorthHolland, Amsterdam, 2002, 983-1055.
doi: 10.1016/S1874-575X(02)80039-X. |
[35] |
B. Sandstede and A. Scheel,
On the structure of spectra of modulated traveling waves, Math. Nachr., 232 (2001), 39-93.
doi: 10.1002/1522-2616(200112)232:1<39::AID-MANA39>3.0.CO;2-5. |
[36] |
B. Sandstede and A. Scheel,
Relative Morse indices, Fredholm indices, and group velocitie, Discrete Contin. Dyn. Syst. A, 20 (2008), 139-158.
|
[37] |
B. Texier and K. Zumbrun,
Nash-Moser iteration and singular perturbations, Ann. Inst. H. Poincare Anal. Non Lineaire, 28 (2011), 499-527.
doi: 10.1016/j.anihpc.2011.05.001. |
[38] |
K. Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 47 (2001), 307-516. |
[39] |
K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, With an Appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 3 (2004), 311-533. |
[40] |
K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, Hyperbolic Systems of Balance Laws, 229-326, Lecture Notes in Math., 1911, Springer, Berlin, 2007.
doi: 10.1007/978-3-540-72187-1_4. |
[41] |
K. Zumbrun, Stability and dynamics of viscous shock waves, Nonlinear Conservation Laws and Applications, 123-167, IMA Vol. Math. Appl., 153, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9554-4_5. |
[42] |
K. Zumbrun,
L∞ resolvent estimates for steady Boltzmann's equation, Kinet. Relat. Models, 10 (2017), 1255-1257.
doi: 10.3934/krm.2017048. |
[43] |
K. Zumbrun,
Conditional stability of unstable viscous shocks, J. Diff. Eq., 247 (2009), 648-671.
doi: 10.1016/j.jde.2009.02.017. |
[44] |
K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871; Errata, Indiana Univ. Math. J., 51 (2002), 1017-1021
doi: 10.1512/iumj.2002.51.2410. |
[45] |
K. Zumbrun and D. Serre,
Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992.
doi: 10.1512/iumj.1999.48.1765. |
[1] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[2] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[3] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[4] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[5] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[6] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[7] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[8] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[9] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[10] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[11] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[12] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[13] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[14] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[15] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[16] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[17] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[20] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]