February  2019, 12(1): 37-58. doi: 10.3934/krm.2019002

Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density

1. 

School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

3. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong 518060, China

* Corresponding author: Xiaoping Zhai

Received  March 2017 Revised  February 2018 Published  July 2018

Fund Project: The first author is supported by the Postdoctoral Science Foundation of China grant 2017M620688, the second author is supported by NSFC grant 11731014, 11571254 and the third author is supported by NSFC grant 11601533.

In this paper, we consider the Cauchy problem of the incompressible MHD system with discontinuous initial density in ${\mathbb R}^3$. We establish the global well-posedness of the MHD system if the initial data satisfies
$(ρ_0, u_0, H_0)∈ L^{∞}({\mathbb R}^3)× H^s({\mathbb R}^3)× H^s({\mathbb R}^3)$
with
$\frac{1}{2} < s \le 1$
and
$0 < \underline{ρ} \le ρ_0 \le \overline{ρ} < +∞,~~~~ \|(u_0, H_0)\|_{\dot{H}^{\frac 12}} \le c, $
for some small
$c>0$
which only depends on
$\underline{ρ}, \overline{ρ}$
. As a byproduct, we also get the decay estimate of the solution.
Citation: Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic and Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002
References:
[1]

H. AbidiG. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[2]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Rational Mech. Anal., 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[3]

H. Abidi and T. Hmidi, Résultats d'existence dans des espaces critiques pour le systéme de la MHD inhomogéne, Ann. Math. Blaise Pascal, 14 (2007), 103-148. 

[4]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.

[5]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[7]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.  doi: 10.1016/j.aim.2010.08.017.

[8]

F. ChenY. Li and H. Xu, Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.  doi: 10.3934/dcds.2016.36.2945.

[9]

D. ChenZ. Zhang and W. Zhao, Fujita-Kato theorem for the 3-D inhomogenous Navier-Stokes equations, J. Differential Equations, 261 (2016), 738-761.  doi: 10.1016/j.jde.2016.03.024.

[10]

Q. ChenC. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872.  doi: 10.1007/s00220-007-0319-y.

[11]

Q. ChenZ. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.  doi: 10.1002/mma.1338.

[12]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.

[13]

R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[14]

R. Danchin and P. B. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[15]

B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 11 (1998), 377-394. 

[16]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[17]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, AMS, Providence, RI, 1998.

[18]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 2 (1997), 427-452. 

[19]

H. Gong and J. Li, Global existence of strong solutions to incompressible MHD, Commun. Pure Appl. Anal., 13 (2014), 1337-1345.  doi: 10.3934/cpaa.2014.13.1337.

[20]

G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488-1539.  doi: 10.1016/j.jfa.2014.06.002.

[21]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[22]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for mutidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[24]

D. Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Comm. Pure Appl. Math., 55 (2002), 1365-1407.  doi: 10.1002/cpa.10046.

[25]

X. HuangJ. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimentional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.

[26]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.

[27]

J. JiaJ. Peng and K. Li, On the decay and stability of global solutions to the 3D inhomogenous MHD system, Comm. Pure Appl. Anal., 16 (2017), 745-780.  doi: 10.3934/cpaa.2017036.

[28]

A. V. Kazhikhov, Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, Dokl. Akad. Nauk SSSR, 216 (1974), 1008-1010. 

[29]

F. LinL. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485.  doi: 10.1016/j.jde.2015.06.034.

[30]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531-580.  doi: 10.1002/cpa.21506.

[31]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1996.

[32]

M. PaicuP. Zhang and Z. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with boundary density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.

[33]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magentic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.

[34]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[35]

H. XuY. Li and X. Zhai, On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces, J. Differential Equations, 260 (2016), 6604-6637.  doi: 10.1016/j.jde.2016.01.007.

[36]

X. ZhaiY. Li and H. Xu, Global well-posedness for the 2-D nonhomogeneous incompressible MHD equations with large initial data, Nonlinear Anal. Real World Appl., 33 (2017), 1-18.  doi: 10.1016/j.nonrwa.2016.05.009.

[37]

X. ZhaiY. Li and W. Yan, Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the ciritical Besov spaces, J. Math. Anal. Appl., 432 (2015), 179-195.  doi: 10.1016/j.jmaa.2015.06.048.

[38]

X. Zhai and Z. Yin, Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations, J. Differential Equations, 262 (2017), 1359-1412.  doi: 10.1016/j.jde.2016.10.016.

show all references

References:
[1]

H. AbidiG. Gui and P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 832-881.  doi: 10.1002/cpa.20351.

[2]

H. AbidiG. Gui and P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Rational Mech. Anal., 204 (2012), 189-230.  doi: 10.1007/s00205-011-0473-4.

[3]

H. Abidi and T. Hmidi, Résultats d'existence dans des espaces critiques pour le systéme de la MHD inhomogéne, Ann. Math. Blaise Pascal, 14 (2007), 103-148. 

[4]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.

[5]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[6]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[7]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.  doi: 10.1016/j.aim.2010.08.017.

[8]

F. ChenY. Li and H. Xu, Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.  doi: 10.3934/dcds.2016.36.2945.

[9]

D. ChenZ. Zhang and W. Zhao, Fujita-Kato theorem for the 3-D inhomogenous Navier-Stokes equations, J. Differential Equations, 261 (2016), 738-761.  doi: 10.1016/j.jde.2016.03.024.

[10]

Q. ChenC. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872.  doi: 10.1007/s00220-007-0319-y.

[11]

Q. ChenZ. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.  doi: 10.1002/mma.1338.

[12]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.

[13]

R. Danchin and P. B. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458-1480.  doi: 10.1002/cpa.21409.

[14]

R. Danchin and P. B. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991-1023.  doi: 10.1007/s00205-012-0586-4.

[15]

B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 11 (1998), 377-394. 

[16]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[17]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, AMS, Providence, RI, 1998.

[18]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 2 (1997), 427-452. 

[19]

H. Gong and J. Li, Global existence of strong solutions to incompressible MHD, Commun. Pure Appl. Anal., 13 (2014), 1337-1345.  doi: 10.3934/cpaa.2014.13.1337.

[20]

G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488-1539.  doi: 10.1016/j.jfa.2014.06.002.

[21]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[22]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for mutidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[24]

D. Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Comm. Pure Appl. Math., 55 (2002), 1365-1407.  doi: 10.1002/cpa.10046.

[25]

X. HuangJ. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimentional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.

[26]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.

[27]

J. JiaJ. Peng and K. Li, On the decay and stability of global solutions to the 3D inhomogenous MHD system, Comm. Pure Appl. Anal., 16 (2017), 745-780.  doi: 10.3934/cpaa.2017036.

[28]

A. V. Kazhikhov, Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, Dokl. Akad. Nauk SSSR, 216 (1974), 1008-1010. 

[29]

F. LinL. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485.  doi: 10.1016/j.jde.2015.06.034.

[30]

F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531-580.  doi: 10.1002/cpa.21506.

[31]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1996.

[32]

M. PaicuP. Zhang and Z. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with boundary density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.

[33]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magentic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.

[34]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[35]

H. XuY. Li and X. Zhai, On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces, J. Differential Equations, 260 (2016), 6604-6637.  doi: 10.1016/j.jde.2016.01.007.

[36]

X. ZhaiY. Li and H. Xu, Global well-posedness for the 2-D nonhomogeneous incompressible MHD equations with large initial data, Nonlinear Anal. Real World Appl., 33 (2017), 1-18.  doi: 10.1016/j.nonrwa.2016.05.009.

[37]

X. ZhaiY. Li and W. Yan, Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the ciritical Besov spaces, J. Math. Anal. Appl., 432 (2015), 179-195.  doi: 10.1016/j.jmaa.2015.06.048.

[38]

X. Zhai and Z. Yin, Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations, J. Differential Equations, 262 (2017), 1359-1412.  doi: 10.1016/j.jde.2016.10.016.

[1]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[2]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[3]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[4]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[5]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[6]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[7]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[8]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[9]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[10]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[11]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[12]

Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022066

[13]

Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031

[14]

Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184

[15]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations and Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[16]

Yangjun Ma. Global well-posedness to incompressible non-inertial Qian-Sheng model. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4479-4496. doi: 10.3934/dcds.2020187

[17]

Jiali Lian. Global well-posedness of the free-interface incompressible Euler equations with damping. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2061-2087. doi: 10.3934/dcds.2020106

[18]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[19]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[20]

Xiaoxiao Suo, Quansen Jiu. Global well-posedness of 2D incompressible Magnetohydrodynamic equations with horizontal dissipation. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022063

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (335)
  • HTML views (310)
  • Cited by (1)

Other articles
by authors

[Back to Top]