\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system

  • * Corresponding author: Mohammad Asadzadeh

    * Corresponding author: Mohammad Asadzadeh 
The research of the first author was supported by the Swedish Research Council VR.
Abstract Full Text(HTML) Figure(2) / Table(2) Related Papers Cited by
  • We study stability and convergence of $hp$-streamline diffusion (SD) finite element, and Nitsche's schemes for the three dimensional, relativistic (3 spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and Maxwell's equations, respectively. For the $hp$ scheme for the Vlasov-Maxwell system, assuming that the exact solution is in the Sobolev space $H^{s+1}(Ω)$, we derive global a priori error bound of order ${\mathcal O}(h/p)^{s+1/2}$, where $h ( = \max_K h_K)$ is the mesh parameter and $p ( = \max_K p_K)$ is the spectral order. This estimate is based on the local version with $h_K = \mbox{ diam } K$ being the diameter of the phase-space-time element $K$ and $p_K$ is the spectral order (the degree of approximating finite element polynomial) for $K$. As for the Nitsche's scheme, by a simple calculus of the field equations, first we convert the Maxwell's system to an elliptic type equation. Then, combining the Nitsche's method for the spatial discretization with a second order time scheme, we obtain optimal convergence of ${\mathcal O}(h^2+k^2)$, where $h$ is the spatial mesh size and $k$ is the time step. Here, as in the classical literature, the second order time scheme requires higher order regularity assumptions. Numerical justification of the results, in lower dimensions, is presented and is also the subject of a forthcoming computational work [22].

    Mathematics Subject Classification: Primary: 65M12, 65M15, 65M60; Secondary: 35L50, 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Magnetic ($B$) and electric ($E_1$, $E_2$) energy for case~1 (left) and case 2 (right).

    Figure 2.  Kinetic energy for case 1 (left) and case 2 (right).

    Table 1.  $L_1$ and $L_2$ errors for different polynomial degrees and fixed mesh sizes set $H_1$

    Error Degree $f$ $E_1$ $E_2$ $B$
    $L_1$ $p=1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
    $p=2$ 1.614e-1 3.248e-9 1.770e-7 9.092e-7
    $p=3$ 1.891e-2 2.295e-10 9.753e-9 3.321e-8
    $L_2$ $p=1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
    $p=2$ 1.632e-1 1.498e-17 4.113e-14 1.070e-12
    $p=3$ 2.833e-3 6.648e-20 1.185e-16 2.186e-15
     | Show Table
    DownLoad: CSV

    Table 2.  $L_1$ and $L_2$ errors for different mesh sizes and fixed polynomial degree $p = 1$

    Error Degree $f$ $E_1$ $E_2$ $B$
    $L_1$ $H_1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
    $H_2$ 1.629e-1 8.304e-10 1.791e-7 8.387e-6
    $H_3$ 4.324e-2 2.016e-10 4.750e-8 2.099e-6
    $L_2$ $H_1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
    $H_2$ 1.939e-1 8.520e-19 3.956e-14 9.298e-11
    $H_3$ 1.444e-2 5.014e-20 2.784e-15 5.850e-12
     | Show Table
    DownLoad: CSV
  • [1] M. Asadzadeh, Streamline diffusion methods for the Vlasov-Poisson equation, ESAIM: Math. Model. Numer. Anal., 24 (1990), 177-196.  doi: 10.1051/m2an/1990240201771.
    [2] M. Asadzadeh and P. Kowalczyk, Convergence analysis of the streamline diffusion and discontinuous Galerkin methods for the Vlasov-Fokker-Planck system, Numer. Methods Partial Differential Equations, 21 (2005), 472-495.  doi: 10.1002/num.20044.
    [3] M. Asadzadeh and P. Kowalczyk, Convergence analysis for backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system, Adv. Comput. Math., 41 (2015), 833-852.  doi: 10.1007/s10444-014-9388-6.
    [4] M. Asadzadeh and A. Sopasakis, Convergence of a hp-streamline diffusion scheme for Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 17 (2007), 1159-1182.  doi: 10.1142/S0218202507002236.
    [5] F. Assous and M. Michaeli, Solving Maxwell's equations in singular domains with a Nitsche type method, J. Comput. Phys., 230 (2011), 4922-4939.  doi: 10.1016/j.jcp.2011.03.013.
    [6] N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal., 46 (2008), 639-670.  doi: 10.1137/050635171.
    [7] F. BrezziL. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), 1893-1903.  doi: 10.1142/S0218202504003866.
    [8] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: Ⅱ. A stabilized Nitsche method, Appl. Numer. Math., 62 (2012), 328-341.  doi: 10.1016/j.apnum.2011.01.008.
    [9] F. CharlesB. Després and M. Mehrenberger, Enhanced convergence estimates for semi-Lagrangian schemes: Application to the Vlasov-Poisson equation, SIAM J. Numer. Anal., 51 (2013), 840-863.  doi: 10.1137/110851511.
    [10] Y. ChengI. M. GambaF. Li and P. J. Morrison, Discontinuous Galerkin methods for the Vlasov-Maxwell equations, SIAM J. Numer. Anal., 52 (2014), 1017-1049.  doi: 10.1137/130915091.
    [11] P. DegondF. Deluzet and D. Doyen, Asymptotic-preserving particle-in-cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, J. Comput. Phys., 330 (2017), 467-492.  doi: 10.1016/j.jcp.2016.11.018.
    [12] B. A. de Dios, J. Carrillo and C. -W. Shu, Discontinuous Galerkin methods for the multidimensional Vlasov-Poisson problem, Math. Models Methods Appl. Sci., 22 (2012), 1250042, 45pp. doi: 10.1142/S021820251250042X.
    [13] R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.
    [14] F. Filbet, Convergence of a finite volume scheme for the Vlasov-Poisson system, SIAM J. Numer. Anal., 39 (2001), 1146-1169.  doi: 10.1137/S003614290037321X.
    [15] F. FilbetY. Guo and C.-W. Shu, Analysis of the relativistic Vlasov-Maxwell model in an interval, Quart. Appl. Math., 63 (2005), 691-714.  doi: 10.1090/S0033-569X-05-00977-9.
    [16] R. GlasseyS. Pankavich and J. Schaeffer, Separated characteristics and global solvability for the one and one-half dimensional Vlasov-Maxwell system, Kinet. Relat. Models, 9 (2016), 455-467.  doi: 10.3934/krm.2016003.
    [17] R. Glassey and J. Schaeffer, On the 'one and one-half' dimensional relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179.  doi: 10.1002/mma.1670130207.
    [18] P. HoustonC. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.  doi: 10.1137/S0036142900374111.
    [19] P. HoustonC. Schwab and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems, SIAM J. Numer. Anal., 37 (2000), 1618-1643.  doi: 10.1137/S0036142998348777.
    [20] T. J. R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite element methods for convection dominated flows, ASME Winter Annual Meeting (ed. T. J. R. Hughes), Amer. Soc. Mech. Engrs., 34 (1979), 19–35.
    [21] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), 1-18.  doi: 10.1090/S0025-5718-1986-0842120-4.
    [22] J. B. Malmberg and C. Standar, Computational aspects of the streamline diffusion schemes for the one and one-half dimensional Vlasov-Maxwell system, in preparation.
    [23] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15.  doi: 10.1007/BF02995904.
    [24] C. Standar, On streamline diffusion schemes for the one and one-half dimensional relativistic Vlasov-Maxwell system, Calcolo, 53 (2016), 147-169.  doi: 10.1007/s10092-015-0141-4.
    [25] S. Sticko and G. Kreiss, A stabilized Nitsche cut element method for the wave equation, Comput. Methods Appl. Mech. Engrg., 309 (2016), 364-387.  doi: 10.1016/j.cma.2016.06.001.
    [26] A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, ESAIM: Math. Model. Numer. Anal., 25 (1991), 749-782.  doi: 10.1051/m2an/1991250607491.
    [27] S. I. ZakiL. R. T. Gardner and T. J. M. Boyd, A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory, J. Comput. Phys., 79 (1988), 184-199.  doi: 10.1016/0021-9991(88)90010-1.
  • 加载中

Figures(2)

Tables(2)

SHARE

Article Metrics

HTML views(614) PDF downloads(202) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return