• Previous Article
    Kinetic models and intrinsic timescales: Simulation comparison for a 2nd order queueing model
  • KRM Home
  • This Issue
  • Next Article
    Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations
February  2019, 12(1): 159-176. doi: 10.3934/krm.2019007

Elastic limit and vanishing external force for granular systems

1. 

School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Fei Meng

Received  February 2017 Revised  February 2018 Published  July 2018

Fund Project: This work is supported by the National Natural Science Foundation of China(Grant No. 11531005); the Scientific Research Foundation of NUPT(Grant No. NY218091)

We consider two popular models derived from the theory of granular gases. The first model is the inelastic Boltzmann equation with a diffusion term representing the heat bath, the second model is obtained by a self-similar transformation for the inelastic Boltzmann equation in the homogeneous cooling problem. We prove that the steady states of the two models converge to a Maxwellian equilibrium or a Dirac distribution in the elastic limit and the vanishing external force, respectively. Our results show that the limits of the steady states depend on the ratio of external energy and dissipated energy due to inelastic collision. These results provide a partial answer to a question proposed by Gamba, Panferov and Villani (Comm. Math. Phys. 246,503-541. 2004).

Citation: Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007
References:
[1]

D. Benedetto and M. Pulvirenti, On the one-dimensional Boltzmann equation for granular flows, Math. Model. Numer. Anal., 35 (2001), 899-905.  doi: 10.1051/m2an:2001141.  Google Scholar

[2]

M. BisiJ. A. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for Granular gases: Diffusive Equilibria, J. Stat. Phys., 118 (2005), 301-331.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[3]

M. BisiJ. A. Carrillo and G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic maxwell model, J. Stat. Phys., 124 (2006), 625-653.  doi: 10.1007/s10955-006-9035-9.  Google Scholar

[4]

A. V. BobylevJ. A. Carrillo and I. M. Gamba, On Some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773.  doi: 10.1023/A:1018627625800.  Google Scholar

[5]

A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath, J. Stat. Phys., 106 (2002), 547-567.  doi: 10.1023/A:1013754205008.  Google Scholar

[6]

A. V. Bobylev and C. Cercignani, Self-similar asympototics for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375.  doi: 10.1023/A:1021031031038.  Google Scholar

[7]

A. V. BobylevI. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Stat. Phys., 116 (2004), 1651-1682.  doi: 10.1023/B:JOSS.0000041751.11664.ea.  Google Scholar

[8]

F. Bolley and J. A. Carrillo, Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys., 276 (2007), 287-314.  doi: 10.1007/s00220-007-0336-x.  Google Scholar

[9]

C. CercignaniR. Illner and C. Stoica, On Diffusive equilibria in generalized kinetic theory, J. Stat. Phys., 105 (2001), 337-352.   Google Scholar

[10]

I. M. GambaV. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., 246 (2004), 503-541.  doi: 10.1007/s00220-004-1051-5.  Google Scholar

[11]

S. MischlerC. Mouhot and M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres. Part Ⅰ: The Cauchy problem, J. Stat. Phys., 124 (2006), 655-702.  doi: 10.1007/s10955-006-9096-9.  Google Scholar

[12]

S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres. Part Ⅱ: Self-similar solutions and tail behavior, J. Stat. Phys., 124 (2006), 703-746.  doi: 10.1007/s10955-006-9097-8.  Google Scholar

[13]

S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard sphere, Comm. Math. Phys., 288 (2009), 431-502.  doi: 10.1007/s00220-009-0773-9.  Google Scholar

[14]

S. Mischler and C. Mouhot, Stability, Convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media, Discrete. Contin. Dyn. Syst., 24 (2009), 159-185.  doi: 10.3934/dcds.2009.24.159.  Google Scholar

[15]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

[16]

C. Villani, Mathematics of granular materials, J. Stat. Phys., 124 (2006), 781-822.  doi: 10.1007/s10955-006-9038-6.  Google Scholar

show all references

References:
[1]

D. Benedetto and M. Pulvirenti, On the one-dimensional Boltzmann equation for granular flows, Math. Model. Numer. Anal., 35 (2001), 899-905.  doi: 10.1051/m2an:2001141.  Google Scholar

[2]

M. BisiJ. A. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for Granular gases: Diffusive Equilibria, J. Stat. Phys., 118 (2005), 301-331.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[3]

M. BisiJ. A. Carrillo and G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic maxwell model, J. Stat. Phys., 124 (2006), 625-653.  doi: 10.1007/s10955-006-9035-9.  Google Scholar

[4]

A. V. BobylevJ. A. Carrillo and I. M. Gamba, On Some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773.  doi: 10.1023/A:1018627625800.  Google Scholar

[5]

A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath, J. Stat. Phys., 106 (2002), 547-567.  doi: 10.1023/A:1013754205008.  Google Scholar

[6]

A. V. Bobylev and C. Cercignani, Self-similar asympototics for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375.  doi: 10.1023/A:1021031031038.  Google Scholar

[7]

A. V. BobylevI. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Stat. Phys., 116 (2004), 1651-1682.  doi: 10.1023/B:JOSS.0000041751.11664.ea.  Google Scholar

[8]

F. Bolley and J. A. Carrillo, Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys., 276 (2007), 287-314.  doi: 10.1007/s00220-007-0336-x.  Google Scholar

[9]

C. CercignaniR. Illner and C. Stoica, On Diffusive equilibria in generalized kinetic theory, J. Stat. Phys., 105 (2001), 337-352.   Google Scholar

[10]

I. M. GambaV. Panferov and C. Villani, On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys., 246 (2004), 503-541.  doi: 10.1007/s00220-004-1051-5.  Google Scholar

[11]

S. MischlerC. Mouhot and M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres. Part Ⅰ: The Cauchy problem, J. Stat. Phys., 124 (2006), 655-702.  doi: 10.1007/s10955-006-9096-9.  Google Scholar

[12]

S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres. Part Ⅱ: Self-similar solutions and tail behavior, J. Stat. Phys., 124 (2006), 703-746.  doi: 10.1007/s10955-006-9097-8.  Google Scholar

[13]

S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard sphere, Comm. Math. Phys., 288 (2009), 431-502.  doi: 10.1007/s00220-009-0773-9.  Google Scholar

[14]

S. Mischler and C. Mouhot, Stability, Convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media, Discrete. Contin. Dyn. Syst., 24 (2009), 159-185.  doi: 10.3934/dcds.2009.24.159.  Google Scholar

[15]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

[16]

C. Villani, Mathematics of granular materials, J. Stat. Phys., 124 (2006), 781-822.  doi: 10.1007/s10955-006-9038-6.  Google Scholar

[1]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[2]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[3]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[4]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[5]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[6]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[7]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[8]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[9]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[10]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[11]

Qingsong Gu, Jiaxin Hu, Sze-Man Ngai. Geometry of self-similar measures on intervals with overlaps and applications to sub-Gaussian heat kernel estimates. Communications on Pure & Applied Analysis, 2020, 19 (2) : 641-676. doi: 10.3934/cpaa.2020030

[12]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[13]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[14]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

[15]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[16]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[17]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[18]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[19]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[20]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (58)
  • HTML views (156)
  • Cited by (0)

Other articles
by authors

[Back to Top]