February  2019, 12(1): 217-242. doi: 10.3934/krm.2019010

A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures

1. 

Univ. Grenoble Alpes, CNRS, Grenoble INP1, LJK, 38000 Grenoble, France

2. 

Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" - CNR, Via Ferrata 5a, 27100 Pavia, Italy

* Corresponding author: C. Jourdana

1 Institute of Engineering Univ. Grenoble Alpes

Received  January 2017 Revised  March 2018 Published  July 2018

In this paper we derive by an entropy minimization technique a local Quantum Drift-Diffusion (QDD) model that allows to describe with accuracy the transport of electrons in confined nanostructures. The starting point is an effective mass model, obtained by considering the crystal lattice as periodic only in the one dimensional longitudinal direction and keeping an atomistic description of the entire two dimensional cross-section. It consists of a sequence of one dimensional device dependent Schrödinger equations, one for each energy band, in which quantities retaining the effects of the confinement and of the transversal crystal structure are inserted. These quantities are incorporated into the definition of the entropy and consequently the QDD model that we obtain has a peculiar quantum correction that includes the contributions of the different energy bands. Next, in order to simulate the electron transport in a gate-all-around Carbon Nanotube Field Effect Transistor, we propose a spatial hybrid strategy coupling the QDD model in the Source/Drain regions and the Schrödinger equations in the channel. Self-consistent computations are performed coupling the hybrid transport equations with the resolution of a Poisson equation in the whole three dimensional domain.

Citation: Clément Jourdana, Paola Pietra. A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures. Kinetic & Related Models, 2019, 12 (1) : 217-242. doi: 10.3934/krm.2019010
References:
[1]

A. AkturkG. Pennington and N. Goldsman, Quantum modeling and proposed designs of cnt-embedded nanoscale mosfets, IEEE Transactions on Electron Devices, 52 (2005), 577-584.  doi: 10.1109/TED.2005.845148.  Google Scholar

[2]

A. M. Anile and S. Pennisi, Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors, Phys. Rev. B, 46 (1992), 13186-13193.  doi: 10.1103/PhysRevB.46.13186.  Google Scholar

[3]

L. Barletti and N. Ben Abdallah, Quantum transport in crystals: Effective mass theorem and k·P hamiltonians, Comm. Math. Phys., 307 (2011), 567-607.  doi: 10.1007/s00220-011-1344-4.  Google Scholar

[4]

L. Barletti and G. Frosali, Diffusive limit of the two-band k.p model for semiconductors, Journal of Statistical Physics, 139 (2010), 280-306.  doi: 10.1007/s10955-010-9940-9.  Google Scholar

[5]

L. Barletti and F. Méhats, Quantum drift-diffusion modeling of spin transport in nanostructures, Journal of Mathematical Physics, 51 (2010), 053304, 20 pp. doi: 10.1063/1.3380530.  Google Scholar

[6]

M. BaroN. Ben AbdallahP. Degond and A. El Ayyadi, A 1d coupled Schrödinger drift-diffusion model including collisions, J. Comput. Phys., 203 (2005), 129-153.  doi: 10.1016/j.jcp.2004.08.009.  Google Scholar

[7]

N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport, J. Statist. Phys., 90 (1998), 627-662.  doi: 10.1023/A:1023216701688.  Google Scholar

[8]

N. Ben AbdallahP. Degond and P. A. Markowich, On a one-dimensional Schrödinger-Poisson scattering model, Z. Angew. Math. Phys., 48 (1997), 135-155.  doi: 10.1007/PL00001463.  Google Scholar

[9]

N. Ben Abdallah, C. Jourdana and P. Pietra, An effective mass model for the simulation of ultra-scaled confined devices, Math. Models Methods Appl. Sci., 22 (2012), 1250039, 40pp. doi: 10.1142/S021820251250039X.  Google Scholar

[10]

Ph. CaussignacB. Zimmermann and R. Ferro, Finite element approximation of electrostatic potential in one-dimensional multilayer structures with quantized electronic charge, Computing, 45 (1990), 251-264.  doi: 10.1007/BF02250636.  Google Scholar

[11]

P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations, J. Comput. Phys., 181 (2002), 222-259.  doi: 10.1006/jcph.2002.7122.  Google Scholar

[12]

P. DegondF. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, Journal of Statistical Physics, 118 (2005), 625-667.  doi: 10.1007/s10955-004-8823-3.  Google Scholar

[13]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Journal of Statistical Physics, 112 (2003), 587-628.  doi: 10.1023/A:1023824008525.  Google Scholar

[14]

A. El Ayyadi and A. Jüngel, Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model, SIAM J. Appl. Math., 66 (2005), 554-572.  doi: 10.1137/040610805.  Google Scholar

[15]

E. GnaniA. GnudiS. ReggianiM. Luisier and G. Baccarani, Band effects on the transport characteristics of ultrascaled snw-fets, IEEE Trans. Nanotechnol., 7 (2008), 700-709.  doi: 10.1109/TNANO.2008.2005777.  Google Scholar

[16]

E. GnaniA. MarchiS. ReggianiM. Rudan and G. Baccarani, Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs, Solid-state Electronics, 50 (2006), 709-715.  doi: 10.1109/ESSDER.2005.1546610.  Google Scholar

[17]

H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. Electron Devices, 11 (1964), 455-465.  doi: 10.1109/T-ED.1964.15364.  Google Scholar

[18]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[19]

C. Jourdana and P. Pietra, A hybrid classical-quantum transport model for the simulation of carbon nanotube transistors, SIAM J. Sci. Comp., 36 (2014), B486-B507.  doi: 10.1137/130926353.  Google Scholar

[20]

C. Jourdana and N. Vauchelet, Analysis of a diffusive effective mass model for nanowires, Kinet. Relat. Models, 4 (2011), 1121-1142.  doi: 10.3934/krm.2011.4.1121.  Google Scholar

[21]

A. Jüngel, Transport Equations for Semiconductors, Lecture Notes in Physics No. 773. Springer, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[22]

A. Jüngel and R. Pinnau, A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system, SIAM J. Num. Anal., 39 (2001), 385-406.  doi: 10.1137/S0036142900369362.  Google Scholar

[23]

B. Kozinsky and N. Marzari, Static dielectric properties of carbon nanotubes from first principles, Phys. Rev. Lett., 96 (2006), 166801.  doi: 10.1103/PhysRevLett.96.166801.  Google Scholar

[24]

C. S. Lent and D. J. Kirkner, The quantum transmitting boundary method, J. Appl. Phys., 67 (1990), 6353-6359.  doi: 10.1063/1.345156.  Google Scholar

[25]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[26]

A. MarchiE. GnaniS. ReggianiM. Rudan and G. Baccarani, Investigating the performance limits of silicon-nanowire and carbon-nanotube FETs, Solid-state Electronics, 50 (2006), 78-85.  doi: 10.1016/j.sse.2005.10.039.  Google Scholar

[27]

F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, Journal of Statistical Physics, 140 (2010), 565-602.  doi: 10.1007/s10955-010-0003-z.  Google Scholar

[28]

F. Méhats and O Pinaud, A problem of moment realizability in quantum statistical physics, Kinetic and Related Models, 4 (2011), 1143-1158.  doi: 10.3934/krm.2011.4.1143.  Google Scholar

[29]

M. PourfathH. Kosina and S. Selberherr, Numerical study of quantum transport in carbon nanotube transistors, Math. Comput. Simul., 79 (2008), 1051-1059.  doi: 10.1016/j.matcom.2007.09.004.  Google Scholar

[30]

C. Ringhofer, Subband diffusion models for quantum transport in a strong force regime, SIAM Journal on Applied Mathematics, 71 (2011), 1871-1895.  doi: 10.1137/100804164.  Google Scholar

[31]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759.  doi: 10.1007/978-3-642-59033-7_9.  Google Scholar

show all references

References:
[1]

A. AkturkG. Pennington and N. Goldsman, Quantum modeling and proposed designs of cnt-embedded nanoscale mosfets, IEEE Transactions on Electron Devices, 52 (2005), 577-584.  doi: 10.1109/TED.2005.845148.  Google Scholar

[2]

A. M. Anile and S. Pennisi, Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors, Phys. Rev. B, 46 (1992), 13186-13193.  doi: 10.1103/PhysRevB.46.13186.  Google Scholar

[3]

L. Barletti and N. Ben Abdallah, Quantum transport in crystals: Effective mass theorem and k·P hamiltonians, Comm. Math. Phys., 307 (2011), 567-607.  doi: 10.1007/s00220-011-1344-4.  Google Scholar

[4]

L. Barletti and G. Frosali, Diffusive limit of the two-band k.p model for semiconductors, Journal of Statistical Physics, 139 (2010), 280-306.  doi: 10.1007/s10955-010-9940-9.  Google Scholar

[5]

L. Barletti and F. Méhats, Quantum drift-diffusion modeling of spin transport in nanostructures, Journal of Mathematical Physics, 51 (2010), 053304, 20 pp. doi: 10.1063/1.3380530.  Google Scholar

[6]

M. BaroN. Ben AbdallahP. Degond and A. El Ayyadi, A 1d coupled Schrödinger drift-diffusion model including collisions, J. Comput. Phys., 203 (2005), 129-153.  doi: 10.1016/j.jcp.2004.08.009.  Google Scholar

[7]

N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport, J. Statist. Phys., 90 (1998), 627-662.  doi: 10.1023/A:1023216701688.  Google Scholar

[8]

N. Ben AbdallahP. Degond and P. A. Markowich, On a one-dimensional Schrödinger-Poisson scattering model, Z. Angew. Math. Phys., 48 (1997), 135-155.  doi: 10.1007/PL00001463.  Google Scholar

[9]

N. Ben Abdallah, C. Jourdana and P. Pietra, An effective mass model for the simulation of ultra-scaled confined devices, Math. Models Methods Appl. Sci., 22 (2012), 1250039, 40pp. doi: 10.1142/S021820251250039X.  Google Scholar

[10]

Ph. CaussignacB. Zimmermann and R. Ferro, Finite element approximation of electrostatic potential in one-dimensional multilayer structures with quantized electronic charge, Computing, 45 (1990), 251-264.  doi: 10.1007/BF02250636.  Google Scholar

[11]

P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations, J. Comput. Phys., 181 (2002), 222-259.  doi: 10.1006/jcph.2002.7122.  Google Scholar

[12]

P. DegondF. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, Journal of Statistical Physics, 118 (2005), 625-667.  doi: 10.1007/s10955-004-8823-3.  Google Scholar

[13]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, Journal of Statistical Physics, 112 (2003), 587-628.  doi: 10.1023/A:1023824008525.  Google Scholar

[14]

A. El Ayyadi and A. Jüngel, Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model, SIAM J. Appl. Math., 66 (2005), 554-572.  doi: 10.1137/040610805.  Google Scholar

[15]

E. GnaniA. GnudiS. ReggianiM. Luisier and G. Baccarani, Band effects on the transport characteristics of ultrascaled snw-fets, IEEE Trans. Nanotechnol., 7 (2008), 700-709.  doi: 10.1109/TNANO.2008.2005777.  Google Scholar

[16]

E. GnaniA. MarchiS. ReggianiM. Rudan and G. Baccarani, Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs, Solid-state Electronics, 50 (2006), 709-715.  doi: 10.1109/ESSDER.2005.1546610.  Google Scholar

[17]

H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. Electron Devices, 11 (1964), 455-465.  doi: 10.1109/T-ED.1964.15364.  Google Scholar

[18]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[19]

C. Jourdana and P. Pietra, A hybrid classical-quantum transport model for the simulation of carbon nanotube transistors, SIAM J. Sci. Comp., 36 (2014), B486-B507.  doi: 10.1137/130926353.  Google Scholar

[20]

C. Jourdana and N. Vauchelet, Analysis of a diffusive effective mass model for nanowires, Kinet. Relat. Models, 4 (2011), 1121-1142.  doi: 10.3934/krm.2011.4.1121.  Google Scholar

[21]

A. Jüngel, Transport Equations for Semiconductors, Lecture Notes in Physics No. 773. Springer, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[22]

A. Jüngel and R. Pinnau, A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system, SIAM J. Num. Anal., 39 (2001), 385-406.  doi: 10.1137/S0036142900369362.  Google Scholar

[23]

B. Kozinsky and N. Marzari, Static dielectric properties of carbon nanotubes from first principles, Phys. Rev. Lett., 96 (2006), 166801.  doi: 10.1103/PhysRevLett.96.166801.  Google Scholar

[24]

C. S. Lent and D. J. Kirkner, The quantum transmitting boundary method, J. Appl. Phys., 67 (1990), 6353-6359.  doi: 10.1063/1.345156.  Google Scholar

[25]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[26]

A. MarchiE. GnaniS. ReggianiM. Rudan and G. Baccarani, Investigating the performance limits of silicon-nanowire and carbon-nanotube FETs, Solid-state Electronics, 50 (2006), 78-85.  doi: 10.1016/j.sse.2005.10.039.  Google Scholar

[27]

F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, Journal of Statistical Physics, 140 (2010), 565-602.  doi: 10.1007/s10955-010-0003-z.  Google Scholar

[28]

F. Méhats and O Pinaud, A problem of moment realizability in quantum statistical physics, Kinetic and Related Models, 4 (2011), 1143-1158.  doi: 10.3934/krm.2011.4.1143.  Google Scholar

[29]

M. PourfathH. Kosina and S. Selberherr, Numerical study of quantum transport in carbon nanotube transistors, Math. Comput. Simul., 79 (2008), 1051-1059.  doi: 10.1016/j.matcom.2007.09.004.  Google Scholar

[30]

C. Ringhofer, Subband diffusion models for quantum transport in a strong force regime, SIAM Journal on Applied Mathematics, 71 (2011), 1871-1895.  doi: 10.1137/100804164.  Google Scholar

[31]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759.  doi: 10.1007/978-3-642-59033-7_9.  Google Scholar

Figure 1.  Schematic longitudinal section of the CNTFET
Figure 2.  3D (left) and 2D (right) representation of atom positions in a (10, 0) 'zig-zag" CNT
Figure 3.  Mobility influence on the current-voltage characteristics obtained with the S-QDD approach
Figure 4.  Current-Voltage characteristics obtained with the five different models
Figure 5.  2D slice of the potential energy (eV) at thermal equilibrium (left: DD model, right: QDD model)
Figure 6.  2D slice of the density in logarithm scale at thermal equilibrium (left: DD model, right: QDD model)
Figure 7.  2D slice of the density in logarithm scale for $V_{DS} = 0.2$ V (left: DD model, right: QDD model)
Figure 8.  Comparison of the potential energy (left) and the density (right) at thermal equilibrium. Curves obtained with S (dashed), DD (dotted) and QDD (solid)
Figure 9.  Comparison of the potential energy (left) and the density (right) for $V_{DS} = 0.2$ V. Curves obtained with S (dashed), DD (dotted) and QDD (solid)
Figure 10.  Comparison of the inverse of the density at thermal equilibrium (left) and for $V_{DS} = 0.2$ V (right). Curves obtained with S (dashed), DD (dotted) and QDD (solid)
Figure 11.  Comparison of the potential energy (left) and the inverse of the density (right) at thermal equilibrium. Curves obtained with S (dashed), S-DD (dotted) and S-QDD (solid)
Figure 12.  Comparison of the potential energy (left) and the inverse of the density (right) for $V_{DS} = 0.2$ V. Curves obtained with S (dashed), S-DD (dotted) and S-QDD (solid)
Figure 13.  Potential energy at thermal equilibrium obtained with S-QDD, moving the left interface position $x_{I_{1}}$ (left) and the right interface position $x_{I_{2}}$ (right)
Figure 14.  Inverse of the density at thermal equilibrium obtained with S-QDD, moving the left interface position $x_{I_{1}}$ (left) and the right interface position $x_{I_{2}}$ (right)
Figure 15.  Current-Voltage characteristics obtained with S-QDD, moving the left interface position $x_{I_{1}}$ (left) and the right interface position $x_{I_{2}}$ (right)
Figure 16.  Potential energy (left) and density (right) at thermal equilibrium obtained with S-QDD in the isotropic case (solid curves) and in the anisotropic case (dashed curves)
Figure 17.  Current-Voltage characteristics obtained with S-QDD in the isotropic case (solid curves) and in the anisotropic case (dashed curves)
[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (168)
  • HTML views (310)
  • Cited by (0)

Other articles
by authors

[Back to Top]