February  2019, 12(1): 243-267. doi: 10.3934/krm.2019011

Time-splitting methods to solve the Hall-MHD systems with Lévy noises

1. 

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

* Corresponding author: Yucong Wang

Received  March 2017 Revised  March 2018 Published  July 2018

Fund Project: Z. Tan and Y.C. Wang is supported by the National Natural Science Foundation of China No. 11271305, 11531010. H. Wang is supported by National Postdoctoral Program for Innovative Talents No. BX201600020.

In this paper, we establish the existence of a martingale solution to the stochastic incompressible Hall-MHD systems with Lévy noises in a bounded domain. The proof is based on a new method, i.e., the time splitting method and the stochastic compactness method.

Citation: Zhong Tan, Huaqiao Wang, Yucong Wang. Time-splitting methods to solve the Hall-MHD systems with Lévy noises. Kinetic & Related Models, 2019, 12 (1) : 243-267. doi: 10.3934/krm.2019011
References:
[1]

M. AcheritogaryP. DegondA. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models., 4 (2011), 901-918.  doi: 10.3934/krm.2011.4.901.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.  Google Scholar

[3]

V. Barbu and G. Da Prato, Existence and ergodicity for the 2D stochastic MHD equations, Appl. Math. Optim., 56 (2007), 145-168.  doi: 10.1007/s00245-007-0882-2.  Google Scholar

[4]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Mathematics, 29 (2016), 977-1000.   Google Scholar

[5]

F. Berthelin and J. Vovelle, Stochastic isentropic Euler equations, Mathematics, (2013), 1-54.   Google Scholar

[6]

Z. Brzeźniak and E. Hausenblas, Uniqueness of the Stochastic Integral Driven by Lévy Processes, in: Seminar on Stochastic Analysis, Random Fields and Applications VI, Birkhäuser, 2011. Google Scholar

[7]

Z. Brzeźniak and E. Hausenblas, Martingale solutions for stochastic equations of reaction diffusion type driven by Lévy noise or Poisson random measure, Preprint, arXiv: math/1010.5933v1. Google Scholar

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedeness and large deviations, Applied Mathematics & Optimization, 61 (2010), 379-420.  doi: 10.1007/s00245-009-9091-z.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[10]

T. G. Forbes, Magnetic reconnection in solar flares, Geophysical Fluid Dynamics., 62 (1991), 15-36.  doi: 10.1080/03091929108229123.  Google Scholar

[11]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.  Google Scholar

[12]

A. Jakubowski, The a.s. Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatnost. i Primenen., 42 (1997), 209-216.  doi: 10.4213/tvp1769.  Google Scholar

[13]

A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Prob., 18 (1986), 20-65.  doi: 10.2307/1427238.  Google Scholar

[14]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[15]

M. J. Lighthill, Studies on magneto-hydrodynamics waves and other anisogtropic wave motion, Philo. Trans. R. Soc. Lond. Ser A., 252 (1960), 397-430.  doi: 10.1098/rsta.1960.0010.  Google Scholar

[16]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes Equation, Appl Math Optim., 46 (2002), 31-53.  doi: 10.1007/s00245-002-0734-6.  Google Scholar

[17]

P. D. MininniD. O. Gomez and S. M. Mahajan, Dynamo Action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472-481.  doi: 10.1086/368181.  Google Scholar

[18]

E. Motyl, Stochastic Navier-Stokes Equations driven by Levy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912.  doi: 10.1007/s11118-012-9300-2.  Google Scholar

[19]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-Abstract framework and applications, Stochasitc Process. Appl., 124 (2014), 2052-2097.  doi: 10.1016/j.spa.2014.01.009.  Google Scholar

[20]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.  Google Scholar

[21]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D., 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[22]

K. I. Sato, Lévy Processes and Infinite Divisible Distributions, Cambridge University Press, Cambridge, 1999.  Google Scholar

[23]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields, Astronomy & Astrophysics., 321 (1997), 685-690.   Google Scholar

[24]

A. N. Simakov and L. Chacón, Quantitative, analytical model for magnetic reconnection in Hall magnetohydrodynamics, Physics of Plasmas, 16 (2009), 055701.  doi: 10.1063/1.3077269.  Google Scholar

[25]

S.S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system, Infinite Dimensional Analysis Quantum Probability & Related Topics, 2 (1999), 241-265.  doi: 10.1142/S0219025799000138.  Google Scholar

[26]

P. Sundar, Stochastic magnetohydrodynamic system perturbed by general noise, Commun. Stoch. Anal., 4 (2010), 253-269.   Google Scholar

[27]

Z. TanD. Wang and H. Wang, Global strong solution to the three-dimensional stochastic incompressible magnetohydrodynamic equations, Math. Ann., 365 (2016), 1219-1256.  doi: 10.1007/s00208-015-1296-7.  Google Scholar

show all references

References:
[1]

M. AcheritogaryP. DegondA. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models., 4 (2011), 901-918.  doi: 10.3934/krm.2011.4.901.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.  Google Scholar

[3]

V. Barbu and G. Da Prato, Existence and ergodicity for the 2D stochastic MHD equations, Appl. Math. Optim., 56 (2007), 145-168.  doi: 10.1007/s00245-007-0882-2.  Google Scholar

[4]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Mathematics, 29 (2016), 977-1000.   Google Scholar

[5]

F. Berthelin and J. Vovelle, Stochastic isentropic Euler equations, Mathematics, (2013), 1-54.   Google Scholar

[6]

Z. Brzeźniak and E. Hausenblas, Uniqueness of the Stochastic Integral Driven by Lévy Processes, in: Seminar on Stochastic Analysis, Random Fields and Applications VI, Birkhäuser, 2011. Google Scholar

[7]

Z. Brzeźniak and E. Hausenblas, Martingale solutions for stochastic equations of reaction diffusion type driven by Lévy noise or Poisson random measure, Preprint, arXiv: math/1010.5933v1. Google Scholar

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedeness and large deviations, Applied Mathematics & Optimization, 61 (2010), 379-420.  doi: 10.1007/s00245-009-9091-z.  Google Scholar

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[10]

T. G. Forbes, Magnetic reconnection in solar flares, Geophysical Fluid Dynamics., 62 (1991), 15-36.  doi: 10.1080/03091929108229123.  Google Scholar

[11]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.  Google Scholar

[12]

A. Jakubowski, The a.s. Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatnost. i Primenen., 42 (1997), 209-216.  doi: 10.4213/tvp1769.  Google Scholar

[13]

A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Prob., 18 (1986), 20-65.  doi: 10.2307/1427238.  Google Scholar

[14]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[15]

M. J. Lighthill, Studies on magneto-hydrodynamics waves and other anisogtropic wave motion, Philo. Trans. R. Soc. Lond. Ser A., 252 (1960), 397-430.  doi: 10.1098/rsta.1960.0010.  Google Scholar

[16]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes Equation, Appl Math Optim., 46 (2002), 31-53.  doi: 10.1007/s00245-002-0734-6.  Google Scholar

[17]

P. D. MininniD. O. Gomez and S. M. Mahajan, Dynamo Action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472-481.  doi: 10.1086/368181.  Google Scholar

[18]

E. Motyl, Stochastic Navier-Stokes Equations driven by Levy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912.  doi: 10.1007/s11118-012-9300-2.  Google Scholar

[19]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-Abstract framework and applications, Stochasitc Process. Appl., 124 (2014), 2052-2097.  doi: 10.1016/j.spa.2014.01.009.  Google Scholar

[20]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.  Google Scholar

[21]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D., 239 (2010), 912-923.  doi: 10.1016/j.physd.2010.01.009.  Google Scholar

[22]

K. I. Sato, Lévy Processes and Infinite Divisible Distributions, Cambridge University Press, Cambridge, 1999.  Google Scholar

[23]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields, Astronomy & Astrophysics., 321 (1997), 685-690.   Google Scholar

[24]

A. N. Simakov and L. Chacón, Quantitative, analytical model for magnetic reconnection in Hall magnetohydrodynamics, Physics of Plasmas, 16 (2009), 055701.  doi: 10.1063/1.3077269.  Google Scholar

[25]

S.S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system, Infinite Dimensional Analysis Quantum Probability & Related Topics, 2 (1999), 241-265.  doi: 10.1142/S0219025799000138.  Google Scholar

[26]

P. Sundar, Stochastic magnetohydrodynamic system perturbed by general noise, Commun. Stoch. Anal., 4 (2010), 253-269.   Google Scholar

[27]

Z. TanD. Wang and H. Wang, Global strong solution to the three-dimensional stochastic incompressible magnetohydrodynamic equations, Math. Ann., 365 (2016), 1219-1256.  doi: 10.1007/s00208-015-1296-7.  Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[5]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (174)
  • HTML views (267)
  • Cited by (0)

Other articles
by authors

[Back to Top]