We present a two-dimensional coupled system for particles and compressible conducting fluid in an electromagnetic field interactions, which the kinetic Vlasov-Fokker-Planck model for particle part and the isentropic compressible MHD equations for the fluid part, respectively, and these separate systems are coupled with the drag force. For this specific coupled system, a sufficient framework for the global existence of classical solutions with large initial data which may contain vacuum is established.
Citation: |
H.-O. Bae
, Y.-P. Choi
, S.-Y. Ha
and M.-J. Kang
, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, J. Differential Equations, 257 (2014)
, 2225-2255.
doi: 10.1016/j.jde.2014.05.035.![]() ![]() ![]() |
|
C. Baranger
, L. Boudin
, P.-E Jabin
and S. Mancini
, A modeling of biospray for the upper airways, CEMRACS 2004 Mathematics and applications to biology and medicine, ESAIM Proc., 14 (2005)
, 41-47.
![]() ![]() |
|
C. Baranger
and L. Desvillettes
, Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006)
, 1-26.
doi: 10.1142/S0219891606000707.![]() ![]() ![]() |
|
S. Berres
, R. Burger
, K. H. Karlsen
and E. M. Tory
, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003)
, 41-80.
doi: 10.1137/S0036139902408163.![]() ![]() ![]() |
|
L. Boudin
, L. Desvillettes
, C. Grandmont
and A. Moussa
, Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differ. Int. Equations, 22 (2009)
, 1247-1271.
![]() ![]() |
|
L. Boudin
, L. Desvillettes
and R. Motte
, A modelling of compressible droplets in a fluid, Commun. Math. Sci., 1 (2003)
, 657-669.
doi: 10.4310/CMS.2003.v1.n4.a2.![]() ![]() ![]() |
|
H. Brezis
and S. Wainger
, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980)
, 773-789.
doi: 10.1080/03605308008820154.![]() ![]() ![]() |
|
L. Caffarelli
, R. Kohn
and L. Nirenberg
, First order interpolation inequality with weights, Compos. Math., 53 (1984)
, 259-275.
![]() ![]() |
|
J. A. Carrillo
, R.-J. Duan
and A. Moussa
, Global classical solutions close to equilibrium to the Vlasov-Euler-Fokker-Planck system, Kinet. Relat. Models., 4 (2011)
, 227-258.
doi: 10.3934/krm.2011.4.227.![]() ![]() ![]() |
|
F. Catrina
and Z.-Q. Wang
, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and non-existence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001)
, 229-258.
doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.![]() ![]() ![]() |
|
R. Coifman
, R. Rochberg
and G. Weiss
, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976)
, 611-635.
doi: 10.2307/1970954.![]() ![]() ![]() |
|
R. Coifman
and Y. Meyer
, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975)
, 315-331.
doi: 10.1090/S0002-9947-1975-0380244-8.![]() ![]() ![]() |
|
R.-J. Duan
and S.-Q. Liu
, Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force, Kinet. Relat. Models, 6 (2013)
, 687-700.
doi: 10.3934/krm.2013.6.687.![]() ![]() ![]() |
|
H. Engler
, An alternative proof of the Brezis-Wainger inequality, Comm. Partial Differential Equations, 14 (1989)
, 541-544.
![]() ![]() |
|
E. Feireisl, Dynamics of Viscous Compressible Fluid, Oxford University Press Inc., 2004.
![]() ![]() |
|
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
|
T. Goudon
, L. He
, A. Moussa
and P. Zhang
, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010)
, 2177-2202.
doi: 10.1137/090776755.![]() ![]() ![]() |
|
S.-Y. Ha, B.-K. Huang, Q.-H. Xiao and X.-T. Zhang, A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data, Submitted.
![]() |
|
S.-Y. Ha
, B.-K. Huang
, Q.-H. Xiao
and X.-T. Zhang
, Global classical solutions to 1D coupled system of flocking particles and compressible fluids with large initial data, Math. Models Methods Appl. Sci., 28 (2018)
, 1-60.
doi: 10.1142/S021820251850001X.![]() ![]() ![]() |
|
K. Hamdache
, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998)
, 51-74.
doi: 10.1007/BF03167396.![]() ![]() ![]() |
|
X.-P. Hu
and D.-H. Wang
, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010)
, 203-238.
doi: 10.1007/s00205-010-0295-9.![]() ![]() ![]() |
|
X.-P. Hu
and D.-H. Wang
, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008)
, 255-284.
doi: 10.1007/s00220-008-0497-2.![]() ![]() ![]() |
|
X.-D. Huang and J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data, arXiv: 1207.3746v1.
![]() |
|
X.-D. Huang
and J. Li
, Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data, J. Math. Pures Appl., 106 (2016)
, 123-154.
doi: 10.1016/j.matpur.2016.02.003.![]() ![]() ![]() |
|
Q.-S. Jiu
, Y. Wang
and Z.-P. Xin
, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014)
, 483-521.
doi: 10.1007/s00021-014-0171-8.![]() ![]() ![]() |
|
Q.-S. Jiu
, Y. Wang
and Z.-P. Xin
, Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differential Equations, 255 (2013)
, 351-404.
doi: 10.1016/j.jde.2013.04.014.![]() ![]() ![]() |
|
F.-C. Li
, Y.-M. Mu
and D.-H. Wang
, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017)
, 984-1026.
doi: 10.1137/15M1053049.![]() ![]() ![]() |
|
P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford University Press, New York, 1996.
![]() ![]() |
|
P. L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models, Oxford University Press, New York, 1998.
![]() ![]() |
|
Y. Mei
, Global classical solutions to the 2D compressible MHD equations with large data and vacuum, J. Differential Equations, 258 (2015)
, 3304-3359.
doi: 10.1016/j.jde.2014.11.023.![]() ![]() ![]() |
|
Y. Mei
, Corrigendum to "Global classical solutions to the 2D compressible MHD equations with large data and vacuum", J. Differential Equations, 258 (2015)
, 3360-3362.
doi: 10.1016/j.jde.2015.02.001.![]() ![]() ![]() |
|
A. Mellet
and A. Vasseur
, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008)
, 573-596.
doi: 10.1007/s00220-008-0523-4.![]() ![]() ![]() |
|
A. Mellet
and A. Vasseur
, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007)
, 1039-1063.
doi: 10.1142/S0218202507002194.![]() ![]() ![]() |
|
A. Novotny and I. Straskraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford, 2004.
![]() ![]() |
|
C. Sparber
, J.-A. Carrillo
, J. Dolbeault
and P.-A. Markowich
, On the long-time behavior of the quantum Fokker-Planck equation, Monatsh. Math., 141 (2004)
, 237-257.
doi: 10.1007/s00605-003-0043-4.![]() ![]() ![]() |
|
F.-A. Williams, Combustion Theory, Benjamin Cummings, 1985.
![]() |
|
V.-A. Vaigant
and A.-V. Kazhikhov
, On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh., 36 (1995)
, 1283-1316.
doi: 10.1007/BF02106835.![]() ![]() ![]() |