• Previous Article
    Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness
  • KRM Home
  • This Issue
  • Next Article
    On the interplay between behavioral dynamics and social interactions in human crowds
April  2019, 12(2): 411-444. doi: 10.3934/krm.2019018

Emergence of aggregation in the swarm sphere model with adaptive coupling laws

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea

3. 

Seoul National University, Dept. of Math. Sciences, Seoul 08826, Republic of Korea

4. 

Myongji University, Dept. of Mathematics, Yong-In 17058, Republic of Korea

* Corresponding author: Se Eun Noh

Received  June 2018 Published  November 2018

We present aggregation estimates for the swarm sphere model equipped with the adaptive coupling laws on a sphere. The temporal evolution of coupling strength is determined by a feedback rule incorporating the balance between relative spatial variations and linear damping. For the analytical treatment, we employ two adaptive feedback laws, namely anti-Hebbian and Hebbian laws. For the anti-Hebbian law, we provide a sufficient framework leading to the complete aggregation in which all particles aggregate to the same position and behave like one big point cluster asymptotically. Our frameworks are given in terms of the initial positions and the coupling strengths. For the Hebbian law, we provide proper subsets of the basin of attractions for the complete aggregation and bi-polar aggregation where particles aggregate to the north pole and south pole simultaneously. We also present a uniform $\ell_p$-stability of the swarm sphere model with an adaptive coupling with respect to the initial data when the complete aggregation occurs exponentially fast.

Citation: Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar

[2]

T. Aoki and T. Aoyagi, Coevolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102 (2009), 034101.Google Scholar

[3]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270. Google Scholar

[4]

Bronski, J. C., DeVille, L., and M. J. Park, Fully Synchronous Solutions and the Synchronization Phase Transition for the Finite N Kuramoto Model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197. Google Scholar

[5]

D. Chi, S.-H. Choi and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703, 18pp. doi: 10.1063/1.4878117. Google Scholar

[6]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Method. in Applied Sci., 26 (2016), 1191-1218. doi: 10.1142/S0218202516500287. Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441. doi: 10.1137/140961699. Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011. Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884. Google Scholar

[10]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196. doi: 10.1016/j.physd.2006.12.004. Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[12]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012. Google Scholar

[13]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X. Google Scholar

[14]

A. Gushchin, E. Mallada and A. Tang, Synchronization of Phase-Coupled Oscillators with Plastic Coupling Strength, Proceedings of Information Theory and Applications Workshop. 2015.Google Scholar

[15]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013. Google Scholar

[16]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267. doi: 10.4171/EMSS/17. Google Scholar

[17]

S.-Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091. doi: 10.4310/CMS.2016.v14.n4.a10. Google Scholar

[18]

S.-Y. HaJ. LeeZ. Li and J. Park, Emergent dynamics of Kuramoto oscillators with adaptive couplings: conservation law and fast learning, SIAM J. Appl. Dyn. Syst., 17 (2018), 1560-1588. Google Scholar

[19]

S.-Y. HaS. E. Noh and J. Park, Syncrhonization of kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194. doi: 10.1137/15M101484X. Google Scholar

[20]

D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949.Google Scholar

[21]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the American Control Conference, (2004), 4296-4301. Google Scholar

[22]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3. Google Scholar

[23]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420.Google Scholar

[24]

M. A. Lohe, Quantum synchronization over quantum networks J. Phys. A: Math. Theor. 43 (2010), 465301, 20pp. doi: 10.1088/1751-8113/43/46/465301. Google Scholar

[25]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101. Google Scholar

[26]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662. doi: 10.1137/0150098. Google Scholar

[27]

R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E, 80 (2009), 066213.Google Scholar

[28]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060-5066. Google Scholar

[29]

C. B. Piccallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states, Phys. Review E, 83 (2011), 036206, 12pp. doi: 10.1103/PhysRevE.83.036206. Google Scholar

[30]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743. Google Scholar

[31]

Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Phys. Review E, 76 (2007), 016207.Google Scholar

[32]

L. Scardovi, Clustering and synchronization in phase models with state dependent coupling, 49th IEEE Conference on Decision and Control, December 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA.Google Scholar

[33]

P. Seliger, S. C. Young and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Phys. Review E, 65 (2002), 041906, 7pp. doi: 10.1103/PhysRevE.65.041906. Google Scholar

[34]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[35]

D. Taylor, E. Ott and J. G. Restrepo, Spontaneous synchronization of coupled oscillator systems with frequency adaptation, Phys. Rev. E, 81 (2010), 046214, 8pp. doi: 10.1103/PhysRevE.81.046214. Google Scholar

[36]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. Google Scholar

[37]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. Google Scholar

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar

[2]

T. Aoki and T. Aoyagi, Coevolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102 (2009), 034101.Google Scholar

[3]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270. Google Scholar

[4]

Bronski, J. C., DeVille, L., and M. J. Park, Fully Synchronous Solutions and the Synchronization Phase Transition for the Finite N Kuramoto Model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197. Google Scholar

[5]

D. Chi, S.-H. Choi and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703, 18pp. doi: 10.1063/1.4878117. Google Scholar

[6]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Method. in Applied Sci., 26 (2016), 1191-1218. doi: 10.1142/S0218202516500287. Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441. doi: 10.1137/140961699. Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011. Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884. Google Scholar

[10]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196. doi: 10.1016/j.physd.2006.12.004. Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[12]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012. Google Scholar

[13]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X. Google Scholar

[14]

A. Gushchin, E. Mallada and A. Tang, Synchronization of Phase-Coupled Oscillators with Plastic Coupling Strength, Proceedings of Information Theory and Applications Workshop. 2015.Google Scholar

[15]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013. Google Scholar

[16]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267. doi: 10.4171/EMSS/17. Google Scholar

[17]

S.-Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091. doi: 10.4310/CMS.2016.v14.n4.a10. Google Scholar

[18]

S.-Y. HaJ. LeeZ. Li and J. Park, Emergent dynamics of Kuramoto oscillators with adaptive couplings: conservation law and fast learning, SIAM J. Appl. Dyn. Syst., 17 (2018), 1560-1588. Google Scholar

[19]

S.-Y. HaS. E. Noh and J. Park, Syncrhonization of kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194. doi: 10.1137/15M101484X. Google Scholar

[20]

D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949.Google Scholar

[21]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the American Control Conference, (2004), 4296-4301. Google Scholar

[22]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3. Google Scholar

[23]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420.Google Scholar

[24]

M. A. Lohe, Quantum synchronization over quantum networks J. Phys. A: Math. Theor. 43 (2010), 465301, 20pp. doi: 10.1088/1751-8113/43/46/465301. Google Scholar

[25]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101. Google Scholar

[26]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662. doi: 10.1137/0150098. Google Scholar

[27]

R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E, 80 (2009), 066213.Google Scholar

[28]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060-5066. Google Scholar

[29]

C. B. Piccallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states, Phys. Review E, 83 (2011), 036206, 12pp. doi: 10.1103/PhysRevE.83.036206. Google Scholar

[30]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743. Google Scholar

[31]

Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Phys. Review E, 76 (2007), 016207.Google Scholar

[32]

L. Scardovi, Clustering and synchronization in phase models with state dependent coupling, 49th IEEE Conference on Decision and Control, December 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA.Google Scholar

[33]

P. Seliger, S. C. Young and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Phys. Review E, 65 (2002), 041906, 7pp. doi: 10.1103/PhysRevE.65.041906. Google Scholar

[34]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[35]

D. Taylor, E. Ott and J. G. Restrepo, Spontaneous synchronization of coupled oscillator systems with frequency adaptation, Phys. Rev. E, 81 (2010), 046214, 8pp. doi: 10.1103/PhysRevE.81.046214. Google Scholar

[36]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. Google Scholar

[37]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. Google Scholar

Figure 1.  Vector field of (60) for $\mu = \gamma = 1$
[1]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[2]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[3]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[4]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[5]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[6]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[7]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[8]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[9]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[10]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[11]

R. Kowalczyk, A. Gamba, L. Preziosi. On the stability of homogeneous solutions to some aggregation models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 203-220. doi: 10.3934/dcdsb.2004.4.203

[12]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[13]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[14]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[15]

Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763

[16]

Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics & Games, 2018, 5 (4) : 265-282. doi: 10.3934/jdg.2018017

[17]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[18]

Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences & Engineering, 2013, 10 (1) : 167-184. doi: 10.3934/mbe.2013.10.167

[19]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[20]

Xavier Blanc, Claude Le Bris, Frédéric Legoll, Tony Lelièvre. Beyond multiscale and multiphysics: Multimaths for model coupling. Networks & Heterogeneous Media, 2010, 5 (3) : 423-460. doi: 10.3934/nhm.2010.5.423

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (43)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]