• Previous Article
    Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness
  • KRM Home
  • This Issue
  • Next Article
    On the interplay between behavioral dynamics and social interactions in human crowds
April  2019, 12(2): 411-444. doi: 10.3934/krm.2019018

Emergence of aggregation in the swarm sphere model with adaptive coupling laws

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea

3. 

Seoul National University, Dept. of Math. Sciences, Seoul 08826, Republic of Korea

4. 

Myongji University, Dept. of Mathematics, Yong-In 17058, Republic of Korea

* Corresponding author: Se Eun Noh

Received  June 2018 Published  November 2018

We present aggregation estimates for the swarm sphere model equipped with the adaptive coupling laws on a sphere. The temporal evolution of coupling strength is determined by a feedback rule incorporating the balance between relative spatial variations and linear damping. For the analytical treatment, we employ two adaptive feedback laws, namely anti-Hebbian and Hebbian laws. For the anti-Hebbian law, we provide a sufficient framework leading to the complete aggregation in which all particles aggregate to the same position and behave like one big point cluster asymptotically. Our frameworks are given in terms of the initial positions and the coupling strengths. For the Hebbian law, we provide proper subsets of the basin of attractions for the complete aggregation and bi-polar aggregation where particles aggregate to the north pole and south pole simultaneously. We also present a uniform $\ell_p$-stability of the swarm sphere model with an adaptive coupling with respect to the initial data when the complete aggregation occurs exponentially fast.

Citation: Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

T. Aoki and T. Aoyagi, Coevolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102 (2009), 034101. Google Scholar

[3]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[4]

Bronski, J. C., DeVille, L., and M. J. Park, Fully Synchronous Solutions and the Synchronization Phase Transition for the Finite N Kuramoto Model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197.  Google Scholar

[5]

D. Chi, S.-H. Choi and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703, 18pp. doi: 10.1063/1.4878117.  Google Scholar

[6]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Method. in Applied Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.  Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196.  doi: 10.1016/j.physd.2006.12.004.  Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[12]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[13]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[14]

A. Gushchin, E. Mallada and A. Tang, Synchronization of Phase-Coupled Oscillators with Plastic Coupling Strength, Proceedings of Information Theory and Applications Workshop. 2015. Google Scholar

[15]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[16]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[17]

S.-Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[18]

S.-Y. HaJ. LeeZ. Li and J. Park, Emergent dynamics of Kuramoto oscillators with adaptive couplings: conservation law and fast learning, SIAM J. Appl. Dyn. Syst., 17 (2018), 1560-1588.   Google Scholar

[19]

S.-Y. HaS. E. Noh and J. Park, Syncrhonization of kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194.  doi: 10.1137/15M101484X.  Google Scholar

[20]

D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949. Google Scholar

[21]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the American Control Conference, (2004), 4296-4301.   Google Scholar

[22]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[23]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. Google Scholar

[24]

M. A. Lohe, Quantum synchronization over quantum networks J. Phys. A: Math. Theor. 43 (2010), 465301, 20pp. doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[25]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[26]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662.  doi: 10.1137/0150098.  Google Scholar

[27]

R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E, 80 (2009), 066213. Google Scholar

[28]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060-5066.   Google Scholar

[29]

C. B. Piccallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states, Phys. Review E, 83 (2011), 036206, 12pp. doi: 10.1103/PhysRevE.83.036206.  Google Scholar

[30]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.  Google Scholar

[31]

Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Phys. Review E, 76 (2007), 016207. Google Scholar

[32]

L. Scardovi, Clustering and synchronization in phase models with state dependent coupling, 49th IEEE Conference on Decision and Control, December 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA. Google Scholar

[33]

P. Seliger, S. C. Young and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Phys. Review E, 65 (2002), 041906, 7pp. doi: 10.1103/PhysRevE.65.041906.  Google Scholar

[34]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[35]

D. Taylor, E. Ott and J. G. Restrepo, Spontaneous synchronization of coupled oscillator systems with frequency adaptation, Phys. Rev. E, 81 (2010), 046214, 8pp. doi: 10.1103/PhysRevE.81.046214.  Google Scholar

[36]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.   Google Scholar

[37]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

T. Aoki and T. Aoyagi, Coevolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102 (2009), 034101. Google Scholar

[3]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[4]

Bronski, J. C., DeVille, L., and M. J. Park, Fully Synchronous Solutions and the Synchronization Phase Transition for the Finite N Kuramoto Model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197.  Google Scholar

[5]

D. Chi, S.-H. Choi and S.-Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703, 18pp. doi: 10.1063/1.4878117.  Google Scholar

[6]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Method. in Applied Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[7]

S.-H. Choi and S.-Y. Ha, Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13 (2014), 1417-1441.  doi: 10.1137/140961699.  Google Scholar

[8]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[10]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196.  doi: 10.1016/j.physd.2006.12.004.  Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[12]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[13]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[14]

A. Gushchin, E. Mallada and A. Tang, Synchronization of Phase-Coupled Oscillators with Plastic Coupling Strength, Proceedings of Information Theory and Applications Workshop. 2015. Google Scholar

[15]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.  doi: 10.1016/j.jde.2013.07.013.  Google Scholar

[16]

S.-Y. HaD. KoJ. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[17]

S.-Y. HaH. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[18]

S.-Y. HaJ. LeeZ. Li and J. Park, Emergent dynamics of Kuramoto oscillators with adaptive couplings: conservation law and fast learning, SIAM J. Appl. Dyn. Syst., 17 (2018), 1560-1588.   Google Scholar

[19]

S.-Y. HaS. E. Noh and J. Park, Syncrhonization of kuramoto oscillators with adaptive couplings, SIAM J. Appl. Dyn. Syst., 15 (2016), 162-194.  doi: 10.1137/15M101484X.  Google Scholar

[20]

D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949. Google Scholar

[21]

A. JadbabaieN. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the American Control Conference, (2004), 4296-4301.   Google Scholar

[22]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[23]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. Google Scholar

[24]

M. A. Lohe, Quantum synchronization over quantum networks J. Phys. A: Math. Theor. 43 (2010), 465301, 20pp. doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[25]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[26]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662.  doi: 10.1137/0150098.  Google Scholar

[27]

R. K. Niyogi and L. Q. English, Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Phys. Rev. E, 80 (2009), 066213. Google Scholar

[28]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control, (2006), 5060-5066.   Google Scholar

[29]

C. B. Piccallo and H. Riecke, Adaptive oscillator networks with conserved overall coupling: Sequential firing and near-synchronized states, Phys. Review E, 83 (2011), 036206, 12pp. doi: 10.1103/PhysRevE.83.036206.  Google Scholar

[30]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.  Google Scholar

[31]

Q. Ren and J. Zhao, Adaptive coupling and enhanced synchronization in coupled phase oscillators, Phys. Review E, 76 (2007), 016207. Google Scholar

[32]

L. Scardovi, Clustering and synchronization in phase models with state dependent coupling, 49th IEEE Conference on Decision and Control, December 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA. Google Scholar

[33]

P. Seliger, S. C. Young and L. S. Tsimring, Plasticity and learning in a network of coupled phase oscillators, Phys. Review E, 65 (2002), 041906, 7pp. doi: 10.1103/PhysRevE.65.041906.  Google Scholar

[34]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[35]

D. Taylor, E. Ott and J. G. Restrepo, Spontaneous synchronization of coupled oscillator systems with frequency adaptation, Phys. Rev. E, 81 (2010), 046214, 8pp. doi: 10.1103/PhysRevE.81.046214.  Google Scholar

[36]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.   Google Scholar

[37]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

Figure 1.  Vector field of (60) for $\mu = \gamma = 1$
[1]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (105)
  • HTML views (178)
  • Cited by (2)

Other articles
by authors

[Back to Top]