Advanced Search
Article Contents
Article Contents

Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness

The author was partially funded by the Austrian Science Fund (FWF) project F 65

Abstract Full Text(HTML) Related Papers Cited by
  • A semiconductor Boltzmann equation with a non-linear BGK-type collision operator is analyzed for a cloud of ultracold atoms in an optical lattice:

    $ \partial _t f + \nabla _pε(p)·\nabla _x f - \nabla _x n_f·\nabla _p f = n_f(1- n_f)(\mathcal{F}_f-f),\;\;\;\; x∈\mathbb{R}^d, p∈\mathbb{T}^d, t>0. $

    This system contains an interaction potential $n_f(x,t): = ∈t_{\mathbb{T}^d}f(x,p,t)dp$ being significantly more singular than the Coulomb potential, which is used in the Vlasov-Poisson system. This causes major structural difficulties in the analysis. Furthermore, $ε(p) = -\sum_{i = 1}^d$ $\cos(2π p_i)$ is the dispersion relation and $\mathcal{F}_f$ denotes the Fermi-Dirac equilibrium distribution, which depends non-linearly on $f$ in this context.

    In a dilute plasma—without collisions (r.h.s$. = 0$)—this system is closely related to the Vlasov-Dirac-Benney equation. It is shown for analytic initial data that the semiconductor Boltzmann equation possesses a local, analytic solution. Here, we exploit the techniques of Mouhout and Villani by using Gevrey-type norms which vary over time. In addition, it is proved that this equation is locally ill-posed in Sobolev spaces close to some Fermi-Dirac equilibrium distribution functions.

    Mathematics Subject Classification: Primary: 35F25, 35F20, 35Q20; Secondary: 35Q83.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   N. B. Abdallah  and  P. Degond , On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996) , 3308-3333.  doi: 10.1063/1.531567.
      A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr and C. Lisdat, Noise and instability of an optical lattice clock, Phys. Rev. A, 92 (2015), 063814, 7 pages.
      N. W. Ashcroft and N. D. Mermin, Solid state physics, Physics Today, 30 (1977), 61. doi: 10.1063/1.3037370.
      C. Bardos  and  N. Besse , The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits, Kinet. Relat. Models, 6 (2013) , 893-917.  doi: 10.3934/krm.2013.6.893.
      C. Bardos and N. Besse, Hamiltonian structure, fluid representation and stability for the Vlasov-Dirac-benney equation, In Hamiltonian Partial Differential Equations and Applications. Selected Papers Based on the Presentations at the Conference on Hamiltonian PDEs: Analysis, Computations and applications, Toronto, Canada, January 10–12, 2014, pages 1– 30. Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2015. doi: 10.1007/978-1-4939-2950-4.
      C. Bardos  and  N. Besse , Semi-classical limit of an infinite dimensional system of nonlinear Schrödinger equations, Bull. Inst. Math., Acad. Sin. (N.S.), 11 (2016) , 43-61. 
      C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621, 16pp. doi: 10.1063/1.4765338.
      E. Bloch , Ultracold quantum gases in optical lattices, Nature Physics, 1 (2005) , 23-30. 
      M. Braukhoff, Effective Equations for a Cloud of Ultracold Atoms in an Optical Lattice, Ph.D thesis, University of Cologne, Germany, 2017.
      M. Braukhoff  and  A. Jüngel , Energy-transport systems for optical lattices: Derivation, analysis, simulation, Mathematical Models and Methods in Applied Sciences, 28 (2018) , 579-614.  doi: 10.1142/S021820251850015X.
      O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. Malomed, T. Sowinski and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Prog. Phys., 78 (2015), 066001, 47 pages.
      A. Griffin, T. Nikuni and E. Zaremba, Bose-Condensed Gases at Finite Temperatures, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511575150.
      D. Han-Kwan  and  T. T. Nguyen , Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Rational Mech. Anal., 221 (2016) , 1317-1344.  doi: 10.1007/s00205-016-0985-z.
      D. Han-Kwan  and  F. Rousset , Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. cole Norm. Sup., 49 (2016) , 1445-1495.  doi: 10.24033/asens.2313.
      P.-E. Jabin  and  A. Nouri , Analytic solutions to a strongly nonlinear Vlasov equation, C. R., Math., Acad. Sci. Paris, 349 (2011) , 541-546.  doi: 10.1016/j.crma.2011.03.024.
      A. Jaksch , Optical lattices, ultracold atoms and quantum information processing, Contemp. Phys., 45 (2004) , 367-381. 
      A. Jüngel, Transport Equations for Semiconductors, Lect. Notes Phys., 773. Springer, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.
      C. Mouhot  and  C. Villani , On Landau damping, Acta Math., 207 (2011) , 29-201.  doi: 10.1007/s11511-011-0068-9.
      N. Ramsey , Thermodynamics and statistical mechanics at negative absolute temperature, Phys. Rev., 103 (1956) , 20-28. 
      A. Rapp, S. Mandt and A. Rosch, Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices, Phys. Rev. Lett., 105 (2010), 220405, 4 pages.
      U. Schneider , L. Hackermüller , J. Ph. Ronzheimer , S. Will , S. Braun , T. Best , I. Bloch , E. Demler , S. Mandt , D. Rasch  and  A. Rosch , Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics, 8 (2012) , 213-218. 
  • 加载中

Article Metrics

HTML views(423) PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint