A semiconductor Boltzmann equation with a non-linear BGK-type collision operator is analyzed for a cloud of ultracold atoms in an optical lattice:
$ \partial _t f + \nabla _pε(p)·\nabla _x f - \nabla _x n_f·\nabla _p f = n_f(1- n_f)(\mathcal{F}_f-f),\;\;\;\; x∈\mathbb{R}^d, p∈\mathbb{T}^d, t>0. $
This system contains an interaction potential $n_f(x,t): = ∈t_{\mathbb{T}^d}f(x,p,t)dp$ being significantly more singular than the Coulomb potential, which is used in the Vlasov-Poisson system. This causes major structural difficulties in the analysis. Furthermore, $ε(p) = -\sum_{i = 1}^d$ $\cos(2π p_i)$ is the dispersion relation and $\mathcal{F}_f$ denotes the Fermi-Dirac equilibrium distribution, which depends non-linearly on $f$ in this context.
In a dilute plasma—without collisions (r.h.s$. = 0$)—this system is closely related to the Vlasov-Dirac-Benney equation. It is shown for analytic initial data that the semiconductor Boltzmann equation possesses a local, analytic solution. Here, we exploit the techniques of Mouhout and Villani by using Gevrey-type norms which vary over time. In addition, it is proved that this equation is locally ill-posed in Sobolev spaces close to some Fermi-Dirac equilibrium distribution functions.
Citation: |
N. B. Abdallah
and P. Degond
, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996)
, 3308-3333.
doi: 10.1063/1.531567.![]() ![]() ![]() |
|
A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr and C. Lisdat, Noise and instability of an optical lattice clock,
Phys. Rev. A, 92 (2015), 063814, 7 pages.
![]() |
|
N. W. Ashcroft and N. D. Mermin, Solid state physics,
Physics Today, 30 (1977), 61.
doi: 10.1063/1.3037370.![]() ![]() |
|
C. Bardos
and N. Besse
, The Cauchy problem for the Vlasov-Dirac-Benney equation and
related issues in fluid mechanics and semi-classical limits, Kinet. Relat. Models, 6 (2013)
, 893-917.
doi: 10.3934/krm.2013.6.893.![]() ![]() ![]() |
|
C. Bardos and N. Besse, Hamiltonian structure, fluid representation and stability for the
Vlasov-Dirac-benney equation, In Hamiltonian Partial Differential Equations and Applications. Selected Papers Based on the Presentations at the Conference on Hamiltonian PDEs:
Analysis, Computations and applications, Toronto, Canada, January 10–12, 2014, pages 1–
30. Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY:
Springer, 2015.
doi: 10.1007/978-1-4939-2950-4.![]() ![]() ![]() |
|
C. Bardos
and N. Besse
, Semi-classical limit of an infinite dimensional system of nonlinear
Schrödinger equations, Bull. Inst. Math., Acad. Sin. (N.S.), 11 (2016)
, 43-61.
![]() ![]() |
|
C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas,
J. Math. Phys., 53 (2012), 115621, 16pp.
doi: 10.1063/1.4765338.![]() ![]() ![]() |
|
E. Bloch
, Ultracold quantum gases in optical lattices, Nature Physics, 1 (2005)
, 23-30.
![]() |
|
M. Braukhoff,
Effective Equations for a Cloud of Ultracold Atoms in an Optical Lattice, Ph.D thesis, University of Cologne, Germany, 2017.
![]() |
|
M. Braukhoff
and A. Jüngel
, Energy-transport systems for optical lattices: Derivation, analysis, simulation, Mathematical Models and Methods in Applied Sciences, 28 (2018)
, 579-614.
doi: 10.1142/S021820251850015X.![]() ![]() ![]() |
|
O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. Malomed, T. Sowinski and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Prog. Phys., 78 (2015), 066001, 47 pages.
![]() |
|
A. Griffin, T. Nikuni and E. Zaremba,
Bose-Condensed Gases at Finite Temperatures, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511575150.![]() ![]() ![]() |
|
D. Han-Kwan
and T. T. Nguyen
, Ill-posedness of the hydrostatic Euler and singular Vlasov
equations, Arch. Rational Mech. Anal., 221 (2016)
, 1317-1344.
doi: 10.1007/s00205-016-0985-z.![]() ![]() ![]() |
|
D. Han-Kwan
and F. Rousset
, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. cole Norm. Sup., 49 (2016)
, 1445-1495.
doi: 10.24033/asens.2313.![]() ![]() ![]() |
|
P.-E. Jabin
and A. Nouri
, Analytic solutions to a strongly nonlinear Vlasov equation, C. R., Math., Acad. Sci. Paris, 349 (2011)
, 541-546.
doi: 10.1016/j.crma.2011.03.024.![]() ![]() ![]() |
|
A. Jaksch
, Optical lattices, ultracold atoms and quantum information processing, Contemp. Phys., 45 (2004)
, 367-381.
![]() |
|
A. Jüngel,
Transport Equations for Semiconductors, Lect. Notes Phys., 773. Springer, Berlin, 2009.
doi: 10.1007/978-3-540-89526-8.![]() ![]() ![]() |
|
C. Mouhot
and C. Villani
, On Landau damping, Acta Math., 207 (2011)
, 29-201.
doi: 10.1007/s11511-011-0068-9.![]() ![]() ![]() |
|
N. Ramsey
, Thermodynamics and statistical mechanics at negative absolute temperature, Phys. Rev., 103 (1956)
, 20-28.
![]() |
|
A. Rapp, S. Mandt and A. Rosch, Equilibration rates and negative absolute temperatures for
ultracold atoms in optical lattices, Phys. Rev. Lett., 105 (2010), 220405, 4 pages.
![]() |
|
U. Schneider
, L. Hackermüller
, J. Ph. Ronzheimer
, S. Will
, S. Braun
, T. Best
, I. Bloch
, E. Demler
, S. Mandt
, D. Rasch
and A. Rosch
, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics, 8 (2012)
, 213-218.
![]() |