We consider the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. This equation has a unique conservative weak solution $ (f_t)_{t\geq 0} $, once the initial condition $ f_0 $ with finite mass and energy is fixed. Taking advantage of the energy conservation, we propose a recursive algorithm that produces a $ (0,\infty)\times {\mathbb{R}}^3 $ random variable $ (M_t,V_t) $ such that $ \mathbb{E}[M_t {\bf 1}_{\{V_t \in \cdot\}}] = f_t $. We also write down a series expansion of $ f_t $. Although both the algorithm and the series expansion might be theoretically interesting in that they explicitly express $ f_t $ in terms of $ f_0 $, we believe that the algorithm is not very efficient in practice and that the series expansion is rather intractable. This is a tedious extension to non-Maxwellian molecules of Wild's sum [
Citation: |
[1] |
E. A. Carlen, M. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397.
doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0.![]() ![]() ![]() |
[2] |
E. A. Carlen, M. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387.
doi: 10.1016/j.jfa.2004.06.011.![]() ![]() ![]() |
[3] |
E. A. Carlen and F. Salvarani, On the optimal choice of coefficients in a truncated Wild sum and approximate solutions for the Kac equation, J. Statist. Phys., 109 (2002), 261-277.
doi: 10.1023/A:1019943813176.![]() ![]() ![]() |
[4] |
C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() ![]() |
[5] |
E. Dolera, E. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem, Ann. Appl. Probab., 19 (2009), 186-209.
doi: 10.1214/08-AAP538.![]() ![]() ![]() |
[6] |
N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods Appl., 10 (2004), 95-106.
doi: 10.1515/156939604777303253.![]() ![]() ![]() |
[7] |
N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71 (2002), 583-604.
doi: 10.1090/S0025-5718-01-01339-4.![]() ![]() ![]() |
[8] |
M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on
Mathematical Statistics and Probability, 1954–1955, vol. Ⅲ, University of California Press,
1956,171–197.
![]() ![]() |
[9] |
X. Lu and C. Mouhot, On measure solutions of the boltzmann equation part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.
doi: 10.1016/j.jde.2011.10.021.![]() ![]() ![]() |
[10] |
H. P. McKean, Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.
doi: 10.1007/BF00264463.![]() ![]() ![]() |
[11] |
H. P. McKean, An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382.
doi: 10.1016/S0021-9800(67)80035-8.![]() ![]() ![]() |
[12] |
S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.
doi: 10.1016/S0294-1449(99)80025-0.![]() ![]() ![]() |
[13] |
L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273.
doi: 10.1137/S1064827500375916.![]() ![]() ![]() |
[14] |
A. J. Povzner, About the Boltzmann equation in kinetic gas theory, Mat. Sborn, 58 (1962), 65-86.
![]() ![]() |
[15] |
H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. und Verw. Gebiete, 46 (1978/79), 67-105.
doi: 10.1007/BF00535689.![]() ![]() ![]() |
[16] |
C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71–305.
doi: 10.1016/S1874-5792(02)80004-0.![]() ![]() ![]() |
[17] |
B. Wennberg, An example of nonuniqueness for solutions to the homogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), 469-477.
doi: 10.1023/A:1004546031908.![]() ![]() ![]() |
[18] |
E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609.
doi: 10.1017/S0305004100026992.![]() ![]() ![]() |