June  2019, 12(3): 483-505. doi: 10.3934/krm.2019020

A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff

Sorbonne Université, CNRS, LPSM, UMR 8001, F-75005 Paris, France

Received  March 2017 Revised  February 2018 Published  February 2019

We consider the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. This equation has a unique conservative weak solution $ (f_t)_{t\geq 0} $, once the initial condition $ f_0 $ with finite mass and energy is fixed. Taking advantage of the energy conservation, we propose a recursive algorithm that produces a $ (0,\infty)\times {\mathbb{R}}^3 $ random variable $ (M_t,V_t) $ such that $ \mathbb{E}[M_t {\bf 1}_{\{V_t \in \cdot\}}] = f_t $. We also write down a series expansion of $ f_t $. Although both the algorithm and the series expansion might be theoretically interesting in that they explicitly express $ f_t $ in terms of $ f_0 $, we believe that the algorithm is not very efficient in practice and that the series expansion is rather intractable. This is a tedious extension to non-Maxwellian molecules of Wild's sum [18] and of its interpretation by McKean [10,11].

Citation: Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020
References:
[1]

E. A. CarlenM. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397.  doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0.  Google Scholar

[2]

E. A. CarlenM. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387.  doi: 10.1016/j.jfa.2004.06.011.  Google Scholar

[3]

E. A. Carlen and F. Salvarani, On the optimal choice of coefficients in a truncated Wild sum and approximate solutions for the Kac equation, J. Statist. Phys., 109 (2002), 261-277.  doi: 10.1023/A:1019943813176.  Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[5]

E. DoleraE. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem, Ann. Appl. Probab., 19 (2009), 186-209.  doi: 10.1214/08-AAP538.  Google Scholar

[6]

N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods Appl., 10 (2004), 95-106.  doi: 10.1515/156939604777303253.  Google Scholar

[7]

N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71 (2002), 583-604.  doi: 10.1090/S0025-5718-01-01339-4.  Google Scholar

[8]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. Ⅲ, University of California Press, 1956,171–197.  Google Scholar

[9]

X. Lu and C. Mouhot, On measure solutions of the boltzmann equation part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.  Google Scholar

[10]

H. P. McKean, Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.  doi: 10.1007/BF00264463.  Google Scholar

[11]

H. P. McKean, An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382.  doi: 10.1016/S0021-9800(67)80035-8.  Google Scholar

[12]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[13]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273.  doi: 10.1137/S1064827500375916.  Google Scholar

[14]

A. J. Povzner, About the Boltzmann equation in kinetic gas theory, Mat. Sborn, 58 (1962), 65-86.   Google Scholar

[15]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. und Verw. Gebiete, 46 (1978/79), 67-105.  doi: 10.1007/BF00535689.  Google Scholar

[16]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71–305. doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[17]

B. Wennberg, An example of nonuniqueness for solutions to the homogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), 469-477.  doi: 10.1023/A:1004546031908.  Google Scholar

[18]

E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609.  doi: 10.1017/S0305004100026992.  Google Scholar

show all references

References:
[1]

E. A. CarlenM. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397.  doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0.  Google Scholar

[2]

E. A. CarlenM. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387.  doi: 10.1016/j.jfa.2004.06.011.  Google Scholar

[3]

E. A. Carlen and F. Salvarani, On the optimal choice of coefficients in a truncated Wild sum and approximate solutions for the Kac equation, J. Statist. Phys., 109 (2002), 261-277.  doi: 10.1023/A:1019943813176.  Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[5]

E. DoleraE. Gabetta and E. Regazzini, Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem, Ann. Appl. Probab., 19 (2009), 186-209.  doi: 10.1214/08-AAP538.  Google Scholar

[6]

N. Fournier and J. S. Giet, Exact simulation of nonlinear coagulation processes, Monte Carlo Methods Appl., 10 (2004), 95-106.  doi: 10.1515/156939604777303253.  Google Scholar

[7]

N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff, Math. Comp., 71 (2002), 583-604.  doi: 10.1090/S0025-5718-01-01339-4.  Google Scholar

[8]

M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. Ⅲ, University of California Press, 1956,171–197.  Google Scholar

[9]

X. Lu and C. Mouhot, On measure solutions of the boltzmann equation part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.  Google Scholar

[10]

H. P. McKean, Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.  doi: 10.1007/BF00264463.  Google Scholar

[11]

H. P. McKean, An exponential formula for solving Boltmann's equation for a Maxwellian gas, J. Combinatorial Theory, 2 (1967), 358-382.  doi: 10.1016/S0021-9800(67)80035-8.  Google Scholar

[12]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[13]

L. Pareschi and G. Russo, Time relaxed Monte Carlo methods for the Boltzmann equation, SIAM J. Sci. Comput., 23 (2001), 1253-1273.  doi: 10.1137/S1064827500375916.  Google Scholar

[14]

A. J. Povzner, About the Boltzmann equation in kinetic gas theory, Mat. Sborn, 58 (1962), 65-86.   Google Scholar

[15]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. und Verw. Gebiete, 46 (1978/79), 67-105.  doi: 10.1007/BF00535689.  Google Scholar

[16]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, I (2002), 71–305. doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[17]

B. Wennberg, An example of nonuniqueness for solutions to the homogeneous Boltzmann equation, J. Statist. Phys., 95 (1999), 469-477.  doi: 10.1023/A:1004546031908.  Google Scholar

[18]

E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609.  doi: 10.1017/S0305004100026992.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[3]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[4]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[5]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[6]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[7]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[8]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[9]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[10]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[11]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[12]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[14]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[15]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[16]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[19]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[20]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (81)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]