• Previous Article
    Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts
  • KRM Home
  • This Issue
  • Next Article
    A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff
June  2019, 12(3): 507-549. doi: 10.3934/krm.2019021

Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation

Saarland University, Department of Mathematics, P.O. Box 15 11 50, 66041 Saarbrücken, Germany

* Corresponding author: Torsten Keßler

Received  December 2017 Revised  July 2018 Published  February 2019

In this paper, we present an application of a Galerkin-Petrov method to the spatially one-dimensional Boltzmann equation. The three-dimensional velocity space is discretised by a spectral method. The space of the test functions is spanned by polynomials, which includes the collision invariants. This automatically insures the exact conservation of mass, momentum and energy. The resulting system of hyperbolic PDEs is solved with a finite volume method. We illustrate our method with two standard tests, namely the Fourier and the Sod shock tube problems. Our results are validated with the help of a stochastic particle method.

Citation: Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021
References:
[1]

A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, Journal of Computational Physics, 272 (2014), 170-188. doi: 10.1016/j.jcp.2014.03.031. Google Scholar

[2]

A. Alekseenko and J. Limbacher, Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $\mathcal{O}(N^2)$ operations using the discrete Fourier transform, 2018, arXiv: 1801.05892v1.Google Scholar

[3]

G. A. Bird, Molecular Gas Dynamics, Clarendon Press, 1976.Google Scholar

[4]

A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on fast Fourier transform, European Journal of Mechanics - B/Fluids, 16 (1997), 293-306. Google Scholar

[5]

A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann for hard spheres, European Journal of Mechanics - B/Fluids, 18 (1999), 869-887. doi: 10.1016/S0997-7546(99)00121-1. Google Scholar

[6]

A. V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using fully conservative difference scheme based on the Fast Fourier Transform, Transport Theory and Statistical Physics, 29 (2000), 289-310. doi: 10.1080/00411450008205876. Google Scholar

[7]

D. Burnett, The distribution of velocities in a slightly non-uniform gas, Proceedings of the London Mathematical Society, 39 (1935), 385-430. doi: 10.1112/plms/s2-39.1.385. Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied mathematical sciences, Springer-Verlag New York, 1994. doi: 10.1007/978-1-4419-8524-8. Google Scholar

[9]

F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, no. ⅩⅧ in Springer Monographs in Mathematics, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-6660-4. Google Scholar

[10]

G. DimarcoR. LoubèreJ. Narski and T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, 353 (2018), 46-81. doi: 10.1016/j.jcp.2017.10.010. Google Scholar

[11]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, in Acta Numerica, Cambridge University Press (CUP), 23 (2014), 369–520. doi: 10.1017/S0962492914000063. Google Scholar

[12]

E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing, 6 (1970), 61-71. Google Scholar

[13]

F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation, Transactions of the American Mathematical Society, 363 (2011), 1947-1980. doi: 10.1090/S0002-9947-2010-05303-6. Google Scholar

[14]

F. FilbetC. Mouhot and L. Pareschi, Solving the Boltzmann equation in $N \log_2 N$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053. doi: 10.1137/050625175. Google Scholar

[15]

F. Filbet and G. Russo, High order numerical methods for the space non-homogeneous Boltzmann equation, Journal of Computational Physics, 186 (2003), 457-480. doi: 10.1016/S0021-9991(03)00065-2. Google Scholar

[16]

E. Fonn, P. Grohs and R. Hiptmair, Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation, Technical Report 2014-13, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014.Google Scholar

[17]

I. M. Gamba and J. R. Haack, A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit, Journal of Computational Physics, 270 (2014), 40-57. doi: 10.1016/j.jcp.2014.03.035. Google Scholar

[18]

I. M. Gamba and S. Rjasanow, Galerkin Petrov approach for the Boltzmann equation, Journal of Computational Physics, 366 (2018), 341-365. doi: 10.1016/j.jcp.2018.04.017. Google Scholar

[19]

I. M. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, Journal of Computational Physics, 228 (2009), 2012-2036. doi: 10.1016/j.jcp.2008.09.033. Google Scholar

[20]

I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460. doi: 10.4208/jcm.1003-m0011. Google Scholar

[21]

G. P. Ghiroldi and L. Gibelli, A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization, Journal of Computational Physics, 258 (2014), 568-584. doi: 10.1016/j.jcp.2013.10.055. Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112. doi: 10.1137/S003614450036757X. Google Scholar

[23]

P. GrohsR. Hiptmair and S. Pintarelli, Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in two dimensions, SMAI-Journal of Computational Mathematics, 3 (2017), 219-248. doi: 10.5802/smai-jcm.26. Google Scholar

[24]

I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid, Computing, 69 (2002), 163-186. doi: 10.1007/s00607-002-1458-9. Google Scholar

[25]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228. doi: 10.1006/jcph.1996.0130. Google Scholar

[26]

G. Kitzler and J. Schöberl, A high order space omentum discontinuous Galerkin method for the Boltzmann equation, Mathematics with Applications, 70 (2015), 1539-1554. doi: 10.1016/j.camwa.2015.06.011. Google Scholar

[27]

V. I. Lebedev, Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 48-54. Google Scholar

[28]

X. LiuS. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212. doi: 10.1006/jcph.1994.1187. Google Scholar

[29]

C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Mathematics of Computation, 75 (2006), 1833-1852. doi: 10.1090/S0025-5718-06-01874-6. Google Scholar

[30]

L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382. doi: 10.1080/00411459608220707. Google Scholar

[31]

L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM Journal on Numerical Analysis, 37 (2000), 1217-1245. doi: 10.1137/S0036142998343300. Google Scholar

[32]

L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory and Statistical Physics, 29 (2000), 431-447. doi: 10.1080/00411450008205883. Google Scholar

[33]

B. Shizgal, Spectral Methods in Chemistry and Physics, Springer, 2015. doi: 10.1007/978-94-017-9454-1. Google Scholar

[34]

G. Sod, Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, 27 (1978), 1-31. doi: 10.1016/0021-9991(78)90023-2. Google Scholar

[35]

L. WuH. LiuY. Zhang and J. M. Reese, Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation, Physics of Fluids, 27 (2015), 082002. doi: 10.1063/1.4929485. Google Scholar

[36]

L. WuJ. M. Reese and Y. Zhang, Oscillatory rarefied gas flow inside rectangular cavities, Journal of Fluid Mechanics, 748 (2014), 350-367. doi: 10.1017/jfm.2014.183. Google Scholar

[37]

L. WuJ. M. Reese and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows, Journal of Fluid Mechanics, 746 (2014), 53-84. doi: 10.1017/jfm.2014.79. Google Scholar

[38]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27-52. doi: 10.1016/j.jcp.2013.05.003. Google Scholar

[39]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases, Journal of Fluid Mechanics, 763 (2015), 24-50. doi: 10.1017/jfm.2014.632. Google Scholar

show all references

References:
[1]

A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, Journal of Computational Physics, 272 (2014), 170-188. doi: 10.1016/j.jcp.2014.03.031. Google Scholar

[2]

A. Alekseenko and J. Limbacher, Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $\mathcal{O}(N^2)$ operations using the discrete Fourier transform, 2018, arXiv: 1801.05892v1.Google Scholar

[3]

G. A. Bird, Molecular Gas Dynamics, Clarendon Press, 1976.Google Scholar

[4]

A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on fast Fourier transform, European Journal of Mechanics - B/Fluids, 16 (1997), 293-306. Google Scholar

[5]

A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann for hard spheres, European Journal of Mechanics - B/Fluids, 18 (1999), 869-887. doi: 10.1016/S0997-7546(99)00121-1. Google Scholar

[6]

A. V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using fully conservative difference scheme based on the Fast Fourier Transform, Transport Theory and Statistical Physics, 29 (2000), 289-310. doi: 10.1080/00411450008205876. Google Scholar

[7]

D. Burnett, The distribution of velocities in a slightly non-uniform gas, Proceedings of the London Mathematical Society, 39 (1935), 385-430. doi: 10.1112/plms/s2-39.1.385. Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied mathematical sciences, Springer-Verlag New York, 1994. doi: 10.1007/978-1-4419-8524-8. Google Scholar

[9]

F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, no. ⅩⅧ in Springer Monographs in Mathematics, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-6660-4. Google Scholar

[10]

G. DimarcoR. LoubèreJ. Narski and T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, 353 (2018), 46-81. doi: 10.1016/j.jcp.2017.10.010. Google Scholar

[11]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, in Acta Numerica, Cambridge University Press (CUP), 23 (2014), 369–520. doi: 10.1017/S0962492914000063. Google Scholar

[12]

E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing, 6 (1970), 61-71. Google Scholar

[13]

F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation, Transactions of the American Mathematical Society, 363 (2011), 1947-1980. doi: 10.1090/S0002-9947-2010-05303-6. Google Scholar

[14]

F. FilbetC. Mouhot and L. Pareschi, Solving the Boltzmann equation in $N \log_2 N$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053. doi: 10.1137/050625175. Google Scholar

[15]

F. Filbet and G. Russo, High order numerical methods for the space non-homogeneous Boltzmann equation, Journal of Computational Physics, 186 (2003), 457-480. doi: 10.1016/S0021-9991(03)00065-2. Google Scholar

[16]

E. Fonn, P. Grohs and R. Hiptmair, Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation, Technical Report 2014-13, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014.Google Scholar

[17]

I. M. Gamba and J. R. Haack, A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit, Journal of Computational Physics, 270 (2014), 40-57. doi: 10.1016/j.jcp.2014.03.035. Google Scholar

[18]

I. M. Gamba and S. Rjasanow, Galerkin Petrov approach for the Boltzmann equation, Journal of Computational Physics, 366 (2018), 341-365. doi: 10.1016/j.jcp.2018.04.017. Google Scholar

[19]

I. M. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, Journal of Computational Physics, 228 (2009), 2012-2036. doi: 10.1016/j.jcp.2008.09.033. Google Scholar

[20]

I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460. doi: 10.4208/jcm.1003-m0011. Google Scholar

[21]

G. P. Ghiroldi and L. Gibelli, A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization, Journal of Computational Physics, 258 (2014), 568-584. doi: 10.1016/j.jcp.2013.10.055. Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112. doi: 10.1137/S003614450036757X. Google Scholar

[23]

P. GrohsR. Hiptmair and S. Pintarelli, Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in two dimensions, SMAI-Journal of Computational Mathematics, 3 (2017), 219-248. doi: 10.5802/smai-jcm.26. Google Scholar

[24]

I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid, Computing, 69 (2002), 163-186. doi: 10.1007/s00607-002-1458-9. Google Scholar

[25]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228. doi: 10.1006/jcph.1996.0130. Google Scholar

[26]

G. Kitzler and J. Schöberl, A high order space omentum discontinuous Galerkin method for the Boltzmann equation, Mathematics with Applications, 70 (2015), 1539-1554. doi: 10.1016/j.camwa.2015.06.011. Google Scholar

[27]

V. I. Lebedev, Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 48-54. Google Scholar

[28]

X. LiuS. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212. doi: 10.1006/jcph.1994.1187. Google Scholar

[29]

C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Mathematics of Computation, 75 (2006), 1833-1852. doi: 10.1090/S0025-5718-06-01874-6. Google Scholar

[30]

L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382. doi: 10.1080/00411459608220707. Google Scholar

[31]

L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM Journal on Numerical Analysis, 37 (2000), 1217-1245. doi: 10.1137/S0036142998343300. Google Scholar

[32]

L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory and Statistical Physics, 29 (2000), 431-447. doi: 10.1080/00411450008205883. Google Scholar

[33]

B. Shizgal, Spectral Methods in Chemistry and Physics, Springer, 2015. doi: 10.1007/978-94-017-9454-1. Google Scholar

[34]

G. Sod, Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, 27 (1978), 1-31. doi: 10.1016/0021-9991(78)90023-2. Google Scholar

[35]

L. WuH. LiuY. Zhang and J. M. Reese, Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation, Physics of Fluids, 27 (2015), 082002. doi: 10.1063/1.4929485. Google Scholar

[36]

L. WuJ. M. Reese and Y. Zhang, Oscillatory rarefied gas flow inside rectangular cavities, Journal of Fluid Mechanics, 748 (2014), 350-367. doi: 10.1017/jfm.2014.183. Google Scholar

[37]

L. WuJ. M. Reese and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows, Journal of Fluid Mechanics, 746 (2014), 53-84. doi: 10.1017/jfm.2014.79. Google Scholar

[38]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27-52. doi: 10.1016/j.jcp.2013.05.003. Google Scholar

[39]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases, Journal of Fluid Mechanics, 763 (2015), 24-50. doi: 10.1017/jfm.2014.632. Google Scholar

Figure 1.  Generalised spectrum of $ D $ with respect to $ M $ for $ K = 9 $, $ L = 9 $, i.e. $ n = 1000 $
Figure 2.  Approximation of the solution by a piecewise constant function. To fulfil boundary conditions, the dashed cells, called ghost cells, are added to the discretisation
Figure 3.  Sketch of the one-dimensional Fourier problem. We seek the particle density function along the axis labeled by $ x $. $ T_l $, $ T_r $ are the temperatures of the walls, $ T_0 $ is the initial temperature of the gas
Figure 4.  Course of the total mass for $ K = 3, L = 6 $, 256 spatial cells and $ {\rm{Kn}} = 0.1 $
Figure 5.  Sketch of the initial situation of the shock tube problem. Two areas of same bulk velocities and temperatures but different densities are separated by diaphragm (dashed line), which is removed at $ t = 0 $
Figure 6.  Contour plot of the final particle density function for $ {\rm{Kn}} = 0.25 $ and $ K = 3 $, $ L = 3 $ at $ x = 0.25 $ in the $ (v_1,v_2) $-plane
Figure 7.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 1.0 $. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 7a shows the density at the time $ t_f $, whereas in Figure 7b, the temperature at the time $ t_f $ is shown
Figure 8.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 1.0 $ near the walls. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figures 8a and 8b show the density at the time $ t_f $ near the left and the right wall, respectively. Figures 8c and 8d show the temperature at the time $ t_f $ near the left and the right wall, respectively
Figure 9.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 0.25 $. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 9a shows the density at the time $ t_f $, whereas in Figure 9b, the temperature at the time $ t_f $ is shown
Figure 10.  Comparison of different sets of basis functions for ${\rm{Kn}} = 0.25$ near the walls. $K$ is set to 3; $L$ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $N_x = 512$ and $\tau$ chosen as in equation (17). Figures 10a and 10b show the density at the time $t_f$ near the left and the right wall, respectively. Figures 10c and 10d show the temperature at the time $t_f$ near the left and the right wall, respectively
Figure 11.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 0.025 $. $ K $ is set to 3; $ L $ the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 11a shows the density at the time $ t_f $, whereas in Figure 11b, the temperature at the time $ t_f $ is shown
Figure 12.  Comparison of different sets of basis functions for ${\rm{Kn}} = 0.025$ near the walls. $K$ is set to 3; $L$ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $N_x = 512$ and $\tau$ chosen as in equation (17). Figures 12a and 12b show the density at the time $t_f$ near the left and the right wall, respectively. Figures 12c and 12d show the temperature at the time $t_f$ near the left and the right wall, respectively
Figure 13.  Comparison of the final particle density function for $K = 3$, $L = 3$ with the stochastic particle density function at $x = 0.25$ for the Knudsen numbers $1.0$, $0.25$ and $0.025$
Figure 14.  Numerical solution of the shock tube problem at $ t_f $ obtained with DSMC and the Galerkin–Petrov method for $ {\rm{Kn}} = 0.1 $. The exact solution of the Euler equations is shown by dashed lines
Figure 15.  Numerical solution of the shock tube problem at $ t_f $ obtained with DSMC and the Galerkin–Petrov method for $ {\rm{Kn}} = 0.01 $. The exact solution of the Euler equations is shown by dashed lines
Figure 16.  Numerical solution of the shock tube problem at $t_f$ obtained with DSMC and the Galerkin--Petrov method for ${\rm{Kn}} = 0.01$. The exact solution of the Euler equations is shown by dashed lines
Figure 17.  Particle density functions for $ {\rm{Kn}} = 0.1 $ shortly after the diaphragm is removed
Figure 18.  Particle density functions for ${\rm{Kn}} = 0.1$ when the shock discontinuity reaches the third evaluation point
Figure 19.  Particle density functions for ${\rm{Kn}} = 0.1$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Figure 20.  Particle density functions for $ {\rm{Kn}} = 0.01 $ shortly after the diaphragm is removed
Figure 21.  Particle density functions for ${\rm{Kn}} = 0.01$ when the shock discontinuity reaches the third evaluation point
Figure 22.  Particle density functions for ${\rm{Kn}} = 0.01$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Figure 23.  Particle density functions for ${\rm{Kn}} = 0.001$ shortly after the diaphragm is removed
Figure 24.  Particle density functions for ${\rm{Kn}} = 0.001$ when the shock discontinuity reaches the third evaluation point
Figure 25.  Particle density functions for ${\rm{Kn}} = 0.001$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Table 1.  Number of basis and test functions for different choices of parameters. The set $ I_{K,L} $ is defined in equation (8)
$K$ $L$ $|{I_{K, L}}|$
3 3 64
3 5 144
3 7 256
$K$ $L$ $|{I_{K, L}}|$
3 3 64
3 5 144
3 7 256
Table 2.  Relative $ L^2 $-error for the mixture from equation (18) with parameters given in equation (19)
basis functions $L^2$-error
$K=1, L=2$ $5.666437\cdot 10^{-2}$
$K=2, L=4$ $6.201405\cdot 10^{-3}$
$K=3, L=6$ $5.937974\cdot 10^{-4}$
$K=4, L=8$ $7.978434\cdot 10^{-5}$
basis functions $L^2$-error
$K=1, L=2$ $5.666437\cdot 10^{-2}$
$K=2, L=4$ $6.201405\cdot 10^{-3}$
$K=3, L=6$ $5.937974\cdot 10^{-4}$
$K=4, L=8$ $7.978434\cdot 10^{-5}$
Table 3.  Relative error of mass conservation for $ {\rm{Kn}} = 1 $
Spatial cells
64 128 256 512
$K=1, L=2$ $9.886570 \cdot 10^{-2}$ $9.875780 \cdot 10^{-2}$ $9.874720 \cdot 10^{-2}$ $9.874130 \cdot 10^{-2}$
$K=2, L=4$ $4.842620 \cdot 10^{-2}$ $4.839010 \cdot 10^{-2}$ $4.835910 \cdot 10^{-2}$ $4.834270 \cdot 10^{-2}$
$K=3, L=6$ $2.402240 \cdot 10^{-2}$ $2.379990 \cdot 10^{-2}$ $2.367980 \cdot 10^{-2}$ $2.361850 \cdot 10^{-2}$
$K=4, L=8$ $1.729450 \cdot 10^{-2}$ $1.706360 \cdot 10^{-2}$ $1.694290 \cdot 10^{-2}$ $1.688380 \cdot 10^{-2}$
Spatial cells
64 128 256 512
$K=1, L=2$ $9.886570 \cdot 10^{-2}$ $9.875780 \cdot 10^{-2}$ $9.874720 \cdot 10^{-2}$ $9.874130 \cdot 10^{-2}$
$K=2, L=4$ $4.842620 \cdot 10^{-2}$ $4.839010 \cdot 10^{-2}$ $4.835910 \cdot 10^{-2}$ $4.834270 \cdot 10^{-2}$
$K=3, L=6$ $2.402240 \cdot 10^{-2}$ $2.379990 \cdot 10^{-2}$ $2.367980 \cdot 10^{-2}$ $2.361850 \cdot 10^{-2}$
$K=4, L=8$ $1.729450 \cdot 10^{-2}$ $1.706360 \cdot 10^{-2}$ $1.694290 \cdot 10^{-2}$ $1.688380 \cdot 10^{-2}$
Table 4.  Relative error of mass conservation for $ {\rm{Kn}} = 0.1 $
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $1.175180 \cdot 10^{-2}$ $1.176170 \cdot 10^{-2}$ $1.174380 \cdot 10^{-2}$ $1.172670 \cdot 10^{-2}$
$K=3, L=6$ $2.435140 \cdot 10^{-3}$ $2.343420 \cdot 10^{-3}$ $2.277850 \cdot 10^{-3}$ $2.233940 \cdot 10^{-3}$
$K=4, L=8$ $2.415870 \cdot 10^{-3}$ $2.309910 \cdot 10^{-3}$ $2.242550 \cdot 10^{-3}$ $2.197230 \cdot 10^{-3}$
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $1.175180 \cdot 10^{-2}$ $1.176170 \cdot 10^{-2}$ $1.174380 \cdot 10^{-2}$ $1.172670 \cdot 10^{-2}$
$K=3, L=6$ $2.435140 \cdot 10^{-3}$ $2.343420 \cdot 10^{-3}$ $2.277850 \cdot 10^{-3}$ $2.233940 \cdot 10^{-3}$
$K=4, L=8$ $2.415870 \cdot 10^{-3}$ $2.309910 \cdot 10^{-3}$ $2.242550 \cdot 10^{-3}$ $2.197230 \cdot 10^{-3}$
Table 5.  Relative error of mass conservation for $ {\rm{Kn}} = 0.01 $
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $7.244610 \cdot 10^{-3}$ $7.324720 \cdot 10^{-3}$ $7.358720 \cdot 10^{-3}$ $7.393080 \cdot 10^{-3}$
$K=3, L=6$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$
$K=4, L=8$ $2.432010 \cdot 10^{-4}$ $2.791020 \cdot 10^{-4}$ $2.729200 \cdot 10^{-4}$ $2.519770 \cdot 10^{-4}$
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $7.244610 \cdot 10^{-3}$ $7.324720 \cdot 10^{-3}$ $7.358720 \cdot 10^{-3}$ $7.393080 \cdot 10^{-3}$
$K=3, L=6$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$
$K=4, L=8$ $2.432010 \cdot 10^{-4}$ $2.791020 \cdot 10^{-4}$ $2.729200 \cdot 10^{-4}$ $2.519770 \cdot 10^{-4}$
[1]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[2]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[3]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[4]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[5]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[6]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[7]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[8]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[9]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[10]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[11]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[12]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[13]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[14]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[15]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[16]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[17]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[18]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[19]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[20]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (47)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]