• Previous Article
    Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts
  • KRM Home
  • This Issue
  • Next Article
    A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff
June  2019, 12(3): 507-549. doi: 10.3934/krm.2019021

Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation

Saarland University, Department of Mathematics, P.O. Box 15 11 50, 66041 Saarbrücken, Germany

* Corresponding author: Torsten Keßler

Received  December 2017 Revised  July 2018 Published  February 2019

In this paper, we present an application of a Galerkin-Petrov method to the spatially one-dimensional Boltzmann equation. The three-dimensional velocity space is discretised by a spectral method. The space of the test functions is spanned by polynomials, which includes the collision invariants. This automatically insures the exact conservation of mass, momentum and energy. The resulting system of hyperbolic PDEs is solved with a finite volume method. We illustrate our method with two standard tests, namely the Fourier and the Sod shock tube problems. Our results are validated with the help of a stochastic particle method.

Citation: Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021
References:
[1]

A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, Journal of Computational Physics, 272 (2014), 170-188.  doi: 10.1016/j.jcp.2014.03.031.  Google Scholar

[2]

A. Alekseenko and J. Limbacher, Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $\mathcal{O}(N^2)$ operations using the discrete Fourier transform, 2018, arXiv: 1801.05892v1. Google Scholar

[3]

G. A. Bird, Molecular Gas Dynamics, Clarendon Press, 1976. Google Scholar

[4]

A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on fast Fourier transform, European Journal of Mechanics - B/Fluids, 16 (1997), 293-306.   Google Scholar

[5]

A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann for hard spheres, European Journal of Mechanics - B/Fluids, 18 (1999), 869-887.  doi: 10.1016/S0997-7546(99)00121-1.  Google Scholar

[6]

A. V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using fully conservative difference scheme based on the Fast Fourier Transform, Transport Theory and Statistical Physics, 29 (2000), 289-310.  doi: 10.1080/00411450008205876.  Google Scholar

[7]

D. Burnett, The distribution of velocities in a slightly non-uniform gas, Proceedings of the London Mathematical Society, 39 (1935), 385-430.  doi: 10.1112/plms/s2-39.1.385.  Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied mathematical sciences, Springer-Verlag New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[9]

F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, no. ⅩⅧ in Springer Monographs in Mathematics, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-6660-4.  Google Scholar

[10]

G. DimarcoR. LoubèreJ. Narski and T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, 353 (2018), 46-81.  doi: 10.1016/j.jcp.2017.10.010.  Google Scholar

[11]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, in Acta Numerica, Cambridge University Press (CUP), 23 (2014), 369–520. doi: 10.1017/S0962492914000063.  Google Scholar

[12]

E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing, 6 (1970), 61-71.   Google Scholar

[13]

F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation, Transactions of the American Mathematical Society, 363 (2011), 1947-1980.  doi: 10.1090/S0002-9947-2010-05303-6.  Google Scholar

[14]

F. FilbetC. Mouhot and L. Pareschi, Solving the Boltzmann equation in $N \log_2 N$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053.  doi: 10.1137/050625175.  Google Scholar

[15]

F. Filbet and G. Russo, High order numerical methods for the space non-homogeneous Boltzmann equation, Journal of Computational Physics, 186 (2003), 457-480.  doi: 10.1016/S0021-9991(03)00065-2.  Google Scholar

[16]

E. Fonn, P. Grohs and R. Hiptmair, Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation, Technical Report 2014-13, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014. Google Scholar

[17]

I. M. Gamba and J. R. Haack, A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit, Journal of Computational Physics, 270 (2014), 40-57.  doi: 10.1016/j.jcp.2014.03.035.  Google Scholar

[18]

I. M. Gamba and S. Rjasanow, Galerkin Petrov approach for the Boltzmann equation, Journal of Computational Physics, 366 (2018), 341-365.  doi: 10.1016/j.jcp.2018.04.017.  Google Scholar

[19]

I. M. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, Journal of Computational Physics, 228 (2009), 2012-2036.  doi: 10.1016/j.jcp.2008.09.033.  Google Scholar

[20]

I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460.  doi: 10.4208/jcm.1003-m0011.  Google Scholar

[21]

G. P. Ghiroldi and L. Gibelli, A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization, Journal of Computational Physics, 258 (2014), 568-584.  doi: 10.1016/j.jcp.2013.10.055.  Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[23]

P. GrohsR. Hiptmair and S. Pintarelli, Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in two dimensions, SMAI-Journal of Computational Mathematics, 3 (2017), 219-248.  doi: 10.5802/smai-jcm.26.  Google Scholar

[24]

I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid, Computing, 69 (2002), 163-186.  doi: 10.1007/s00607-002-1458-9.  Google Scholar

[25]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228.  doi: 10.1006/jcph.1996.0130.  Google Scholar

[26]

G. Kitzler and J. Schöberl, A high order space omentum discontinuous Galerkin method for the Boltzmann equation, Mathematics with Applications, 70 (2015), 1539-1554.  doi: 10.1016/j.camwa.2015.06.011.  Google Scholar

[27]

V. I. Lebedev, Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 48-54.   Google Scholar

[28]

X. LiuS. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.  doi: 10.1006/jcph.1994.1187.  Google Scholar

[29]

C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Mathematics of Computation, 75 (2006), 1833-1852.  doi: 10.1090/S0025-5718-06-01874-6.  Google Scholar

[30]

L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382.  doi: 10.1080/00411459608220707.  Google Scholar

[31]

L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM Journal on Numerical Analysis, 37 (2000), 1217-1245.  doi: 10.1137/S0036142998343300.  Google Scholar

[32]

L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory and Statistical Physics, 29 (2000), 431-447.  doi: 10.1080/00411450008205883.  Google Scholar

[33]

B. Shizgal, Spectral Methods in Chemistry and Physics, Springer, 2015. doi: 10.1007/978-94-017-9454-1.  Google Scholar

[34]

G. Sod, Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, 27 (1978), 1-31.  doi: 10.1016/0021-9991(78)90023-2.  Google Scholar

[35]

L. WuH. LiuY. Zhang and J. M. Reese, Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation, Physics of Fluids, 27 (2015), 082002.  doi: 10.1063/1.4929485.  Google Scholar

[36]

L. WuJ. M. Reese and Y. Zhang, Oscillatory rarefied gas flow inside rectangular cavities, Journal of Fluid Mechanics, 748 (2014), 350-367.  doi: 10.1017/jfm.2014.183.  Google Scholar

[37]

L. WuJ. M. Reese and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows, Journal of Fluid Mechanics, 746 (2014), 53-84.  doi: 10.1017/jfm.2014.79.  Google Scholar

[38]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27-52.  doi: 10.1016/j.jcp.2013.05.003.  Google Scholar

[39]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases, Journal of Fluid Mechanics, 763 (2015), 24-50.  doi: 10.1017/jfm.2014.632.  Google Scholar

show all references

References:
[1]

A. Alekseenko and E. Josyula, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space, Journal of Computational Physics, 272 (2014), 170-188.  doi: 10.1016/j.jcp.2014.03.031.  Google Scholar

[2]

A. Alekseenko and J. Limbacher, Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $\mathcal{O}(N^2)$ operations using the discrete Fourier transform, 2018, arXiv: 1801.05892v1. Google Scholar

[3]

G. A. Bird, Molecular Gas Dynamics, Clarendon Press, 1976. Google Scholar

[4]

A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on fast Fourier transform, European Journal of Mechanics - B/Fluids, 16 (1997), 293-306.   Google Scholar

[5]

A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann for hard spheres, European Journal of Mechanics - B/Fluids, 18 (1999), 869-887.  doi: 10.1016/S0997-7546(99)00121-1.  Google Scholar

[6]

A. V. Bobylev and S. Rjasanow, Numerical solution of the Boltzmann equation using fully conservative difference scheme based on the Fast Fourier Transform, Transport Theory and Statistical Physics, 29 (2000), 289-310.  doi: 10.1080/00411450008205876.  Google Scholar

[7]

D. Burnett, The distribution of velocities in a slightly non-uniform gas, Proceedings of the London Mathematical Society, 39 (1935), 385-430.  doi: 10.1112/plms/s2-39.1.385.  Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied mathematical sciences, Springer-Verlag New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[9]

F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, no. ⅩⅧ in Springer Monographs in Mathematics, Springer-Verlag New York, 2013. doi: 10.1007/978-1-4614-6660-4.  Google Scholar

[10]

G. DimarcoR. LoubèreJ. Narski and T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, Journal of Computational Physics, 353 (2018), 46-81.  doi: 10.1016/j.jcp.2017.10.010.  Google Scholar

[11]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, in Acta Numerica, Cambridge University Press (CUP), 23 (2014), 369–520. doi: 10.1017/S0962492914000063.  Google Scholar

[12]

E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing, 6 (1970), 61-71.   Google Scholar

[13]

F. Filbet and C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann equation, Transactions of the American Mathematical Society, 363 (2011), 1947-1980.  doi: 10.1090/S0002-9947-2010-05303-6.  Google Scholar

[14]

F. FilbetC. Mouhot and L. Pareschi, Solving the Boltzmann equation in $N \log_2 N$, SIAM Journal on Scientific Computing, 28 (2006), 1029-1053.  doi: 10.1137/050625175.  Google Scholar

[15]

F. Filbet and G. Russo, High order numerical methods for the space non-homogeneous Boltzmann equation, Journal of Computational Physics, 186 (2003), 457-480.  doi: 10.1016/S0021-9991(03)00065-2.  Google Scholar

[16]

E. Fonn, P. Grohs and R. Hiptmair, Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation, Technical Report 2014-13, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014. Google Scholar

[17]

I. M. Gamba and J. R. Haack, A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit, Journal of Computational Physics, 270 (2014), 40-57.  doi: 10.1016/j.jcp.2014.03.035.  Google Scholar

[18]

I. M. Gamba and S. Rjasanow, Galerkin Petrov approach for the Boltzmann equation, Journal of Computational Physics, 366 (2018), 341-365.  doi: 10.1016/j.jcp.2018.04.017.  Google Scholar

[19]

I. M. Gamba and S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, Journal of Computational Physics, 228 (2009), 2012-2036.  doi: 10.1016/j.jcp.2008.09.033.  Google Scholar

[20]

I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics, 28 (2010), 430-460.  doi: 10.4208/jcm.1003-m0011.  Google Scholar

[21]

G. P. Ghiroldi and L. Gibelli, A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization, Journal of Computational Physics, 258 (2014), 568-584.  doi: 10.1016/j.jcp.2013.10.055.  Google Scholar

[22]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[23]

P. GrohsR. Hiptmair and S. Pintarelli, Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in two dimensions, SMAI-Journal of Computational Mathematics, 3 (2017), 219-248.  doi: 10.5802/smai-jcm.26.  Google Scholar

[24]

I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid, Computing, 69 (2002), 163-186.  doi: 10.1007/s00607-002-1458-9.  Google Scholar

[25]

G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202-228.  doi: 10.1006/jcph.1996.0130.  Google Scholar

[26]

G. Kitzler and J. Schöberl, A high order space omentum discontinuous Galerkin method for the Boltzmann equation, Mathematics with Applications, 70 (2015), 1539-1554.  doi: 10.1016/j.camwa.2015.06.011.  Google Scholar

[27]

V. I. Lebedev, Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion, USSR Computational Mathematics and Mathematical Physics, 15 (1975), 48-54.   Google Scholar

[28]

X. LiuS. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.  doi: 10.1006/jcph.1994.1187.  Google Scholar

[29]

C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Mathematics of Computation, 75 (2006), 1833-1852.  doi: 10.1090/S0025-5718-06-01874-6.  Google Scholar

[30]

L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory and Statistical Physics, 25 (1996), 369-382.  doi: 10.1080/00411459608220707.  Google Scholar

[31]

L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator, SIAM Journal on Numerical Analysis, 37 (2000), 1217-1245.  doi: 10.1137/S0036142998343300.  Google Scholar

[32]

L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory and Statistical Physics, 29 (2000), 431-447.  doi: 10.1080/00411450008205883.  Google Scholar

[33]

B. Shizgal, Spectral Methods in Chemistry and Physics, Springer, 2015. doi: 10.1007/978-94-017-9454-1.  Google Scholar

[34]

G. Sod, Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, 27 (1978), 1-31.  doi: 10.1016/0021-9991(78)90023-2.  Google Scholar

[35]

L. WuH. LiuY. Zhang and J. M. Reese, Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation, Physics of Fluids, 27 (2015), 082002.  doi: 10.1063/1.4929485.  Google Scholar

[36]

L. WuJ. M. Reese and Y. Zhang, Oscillatory rarefied gas flow inside rectangular cavities, Journal of Fluid Mechanics, 748 (2014), 350-367.  doi: 10.1017/jfm.2014.183.  Google Scholar

[37]

L. WuJ. M. Reese and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows, Journal of Fluid Mechanics, 746 (2014), 53-84.  doi: 10.1017/jfm.2014.79.  Google Scholar

[38]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, Journal of Computational Physics, 250 (2013), 27-52.  doi: 10.1016/j.jcp.2013.05.003.  Google Scholar

[39]

L. WuC. WhiteT. J. ScanlonJ. M. Reese and Y. Zhang, A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases, Journal of Fluid Mechanics, 763 (2015), 24-50.  doi: 10.1017/jfm.2014.632.  Google Scholar

Figure 1.  Generalised spectrum of $ D $ with respect to $ M $ for $ K = 9 $, $ L = 9 $, i.e. $ n = 1000 $
Figure 2.  Approximation of the solution by a piecewise constant function. To fulfil boundary conditions, the dashed cells, called ghost cells, are added to the discretisation
Figure 3.  Sketch of the one-dimensional Fourier problem. We seek the particle density function along the axis labeled by $ x $. $ T_l $, $ T_r $ are the temperatures of the walls, $ T_0 $ is the initial temperature of the gas
Figure 4.  Course of the total mass for $ K = 3, L = 6 $, 256 spatial cells and $ {\rm{Kn}} = 0.1 $
Figure 5.  Sketch of the initial situation of the shock tube problem. Two areas of same bulk velocities and temperatures but different densities are separated by diaphragm (dashed line), which is removed at $ t = 0 $
Figure 6.  Contour plot of the final particle density function for $ {\rm{Kn}} = 0.25 $ and $ K = 3 $, $ L = 3 $ at $ x = 0.25 $ in the $ (v_1,v_2) $-plane
Figure 7.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 1.0 $. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 7a shows the density at the time $ t_f $, whereas in Figure 7b, the temperature at the time $ t_f $ is shown
Figure 8.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 1.0 $ near the walls. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figures 8a and 8b show the density at the time $ t_f $ near the left and the right wall, respectively. Figures 8c and 8d show the temperature at the time $ t_f $ near the left and the right wall, respectively
Figure 9.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 0.25 $. $ K $ is set to 3; $ L $ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 9a shows the density at the time $ t_f $, whereas in Figure 9b, the temperature at the time $ t_f $ is shown
Figure 10.  Comparison of different sets of basis functions for ${\rm{Kn}} = 0.25$ near the walls. $K$ is set to 3; $L$ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $N_x = 512$ and $\tau$ chosen as in equation (17). Figures 10a and 10b show the density at the time $t_f$ near the left and the right wall, respectively. Figures 10c and 10d show the temperature at the time $t_f$ near the left and the right wall, respectively
Figure 11.  Comparison of different sets of basis functions for $ {\rm{Kn}} = 0.025 $. $ K $ is set to 3; $ L $ the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $ N_x = 512 $ and $ \tau $ chosen as in equation (17). Figure 11a shows the density at the time $ t_f $, whereas in Figure 11b, the temperature at the time $ t_f $ is shown
Figure 12.  Comparison of different sets of basis functions for ${\rm{Kn}} = 0.025$ near the walls. $K$ is set to 3; $L$ takes the values 3, 5 and 7. The stochastic curves are added for reference. The deterministic curves are obtained with $N_x = 512$ and $\tau$ chosen as in equation (17). Figures 12a and 12b show the density at the time $t_f$ near the left and the right wall, respectively. Figures 12c and 12d show the temperature at the time $t_f$ near the left and the right wall, respectively
Figure 13.  Comparison of the final particle density function for $K = 3$, $L = 3$ with the stochastic particle density function at $x = 0.25$ for the Knudsen numbers $1.0$, $0.25$ and $0.025$
Figure 14.  Numerical solution of the shock tube problem at $ t_f $ obtained with DSMC and the Galerkin–Petrov method for $ {\rm{Kn}} = 0.1 $. The exact solution of the Euler equations is shown by dashed lines
Figure 15.  Numerical solution of the shock tube problem at $ t_f $ obtained with DSMC and the Galerkin–Petrov method for $ {\rm{Kn}} = 0.01 $. The exact solution of the Euler equations is shown by dashed lines
Figure 16.  Numerical solution of the shock tube problem at $t_f$ obtained with DSMC and the Galerkin--Petrov method for ${\rm{Kn}} = 0.01$. The exact solution of the Euler equations is shown by dashed lines
Figure 17.  Particle density functions for $ {\rm{Kn}} = 0.1 $ shortly after the diaphragm is removed
Figure 18.  Particle density functions for ${\rm{Kn}} = 0.1$ when the shock discontinuity reaches the third evaluation point
Figure 19.  Particle density functions for ${\rm{Kn}} = 0.1$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Figure 20.  Particle density functions for $ {\rm{Kn}} = 0.01 $ shortly after the diaphragm is removed
Figure 21.  Particle density functions for ${\rm{Kn}} = 0.01$ when the shock discontinuity reaches the third evaluation point
Figure 22.  Particle density functions for ${\rm{Kn}} = 0.01$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Figure 23.  Particle density functions for ${\rm{Kn}} = 0.001$ shortly after the diaphragm is removed
Figure 24.  Particle density functions for ${\rm{Kn}} = 0.001$ when the shock discontinuity reaches the third evaluation point
Figure 25.  Particle density functions for ${\rm{Kn}} = 0.001$ when the contact discontinuity reaches the third evaluation point at time $t_f$
Table 1.  Number of basis and test functions for different choices of parameters. The set $ I_{K,L} $ is defined in equation (8)
$K$ $L$ $|{I_{K, L}}|$
3 3 64
3 5 144
3 7 256
$K$ $L$ $|{I_{K, L}}|$
3 3 64
3 5 144
3 7 256
Table 2.  Relative $ L^2 $-error for the mixture from equation (18) with parameters given in equation (19)
basis functions $L^2$-error
$K=1, L=2$ $5.666437\cdot 10^{-2}$
$K=2, L=4$ $6.201405\cdot 10^{-3}$
$K=3, L=6$ $5.937974\cdot 10^{-4}$
$K=4, L=8$ $7.978434\cdot 10^{-5}$
basis functions $L^2$-error
$K=1, L=2$ $5.666437\cdot 10^{-2}$
$K=2, L=4$ $6.201405\cdot 10^{-3}$
$K=3, L=6$ $5.937974\cdot 10^{-4}$
$K=4, L=8$ $7.978434\cdot 10^{-5}$
Table 3.  Relative error of mass conservation for $ {\rm{Kn}} = 1 $
Spatial cells
64 128 256 512
$K=1, L=2$ $9.886570 \cdot 10^{-2}$ $9.875780 \cdot 10^{-2}$ $9.874720 \cdot 10^{-2}$ $9.874130 \cdot 10^{-2}$
$K=2, L=4$ $4.842620 \cdot 10^{-2}$ $4.839010 \cdot 10^{-2}$ $4.835910 \cdot 10^{-2}$ $4.834270 \cdot 10^{-2}$
$K=3, L=6$ $2.402240 \cdot 10^{-2}$ $2.379990 \cdot 10^{-2}$ $2.367980 \cdot 10^{-2}$ $2.361850 \cdot 10^{-2}$
$K=4, L=8$ $1.729450 \cdot 10^{-2}$ $1.706360 \cdot 10^{-2}$ $1.694290 \cdot 10^{-2}$ $1.688380 \cdot 10^{-2}$
Spatial cells
64 128 256 512
$K=1, L=2$ $9.886570 \cdot 10^{-2}$ $9.875780 \cdot 10^{-2}$ $9.874720 \cdot 10^{-2}$ $9.874130 \cdot 10^{-2}$
$K=2, L=4$ $4.842620 \cdot 10^{-2}$ $4.839010 \cdot 10^{-2}$ $4.835910 \cdot 10^{-2}$ $4.834270 \cdot 10^{-2}$
$K=3, L=6$ $2.402240 \cdot 10^{-2}$ $2.379990 \cdot 10^{-2}$ $2.367980 \cdot 10^{-2}$ $2.361850 \cdot 10^{-2}$
$K=4, L=8$ $1.729450 \cdot 10^{-2}$ $1.706360 \cdot 10^{-2}$ $1.694290 \cdot 10^{-2}$ $1.688380 \cdot 10^{-2}$
Table 4.  Relative error of mass conservation for $ {\rm{Kn}} = 0.1 $
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $1.175180 \cdot 10^{-2}$ $1.176170 \cdot 10^{-2}$ $1.174380 \cdot 10^{-2}$ $1.172670 \cdot 10^{-2}$
$K=3, L=6$ $2.435140 \cdot 10^{-3}$ $2.343420 \cdot 10^{-3}$ $2.277850 \cdot 10^{-3}$ $2.233940 \cdot 10^{-3}$
$K=4, L=8$ $2.415870 \cdot 10^{-3}$ $2.309910 \cdot 10^{-3}$ $2.242550 \cdot 10^{-3}$ $2.197230 \cdot 10^{-3}$
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $1.175180 \cdot 10^{-2}$ $1.176170 \cdot 10^{-2}$ $1.174380 \cdot 10^{-2}$ $1.172670 \cdot 10^{-2}$
$K=3, L=6$ $2.435140 \cdot 10^{-3}$ $2.343420 \cdot 10^{-3}$ $2.277850 \cdot 10^{-3}$ $2.233940 \cdot 10^{-3}$
$K=4, L=8$ $2.415870 \cdot 10^{-3}$ $2.309910 \cdot 10^{-3}$ $2.242550 \cdot 10^{-3}$ $2.197230 \cdot 10^{-3}$
Table 5.  Relative error of mass conservation for $ {\rm{Kn}} = 0.01 $
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $7.244610 \cdot 10^{-3}$ $7.324720 \cdot 10^{-3}$ $7.358720 \cdot 10^{-3}$ $7.393080 \cdot 10^{-3}$
$K=3, L=6$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$
$K=4, L=8$ $2.432010 \cdot 10^{-4}$ $2.791020 \cdot 10^{-4}$ $2.729200 \cdot 10^{-4}$ $2.519770 \cdot 10^{-4}$
Spatial cells
64 128 256 512
$K=1, L=2$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$ $3.226070 \cdot 10^{-2}$
$K=2, L=4$ $7.244610 \cdot 10^{-3}$ $7.324720 \cdot 10^{-3}$ $7.358720 \cdot 10^{-3}$ $7.393080 \cdot 10^{-3}$
$K=3, L=6$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$ $8.215370 \cdot 10^{-4}$
$K=4, L=8$ $2.432010 \cdot 10^{-4}$ $2.791020 \cdot 10^{-4}$ $2.729200 \cdot 10^{-4}$ $2.519770 \cdot 10^{-4}$
[1]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[8]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[9]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[10]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[12]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[18]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (198)
  • HTML views (94)
  • Cited by (1)

Other articles
by authors

[Back to Top]