• Previous Article
    Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation
  • KRM Home
  • This Issue
  • Next Article
    Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition
June  2019, 12(3): 593-636. doi: 10.3934/krm.2019024

Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations

1. 

Inria, Univ. Lille, CNRS, UMR 8524 Laboratoire Paul Painlevé, F-59000 Lille, France

2. 

IRMAR, UMR CNRS 6625, Université de Rennes 1, 263 avenue du General Leclerc, 35042 Rennes Cedex, France

Received  May 2018 Revised  December 2018 Published  February 2019

Fund Project: Research of L. Miguel Rodrigues was partially supported by the ANR project BoND ANR-13-BS01-0009-01

We consider various sets of Vlasov-Fokker-Planck equations modeling the dynamics of charged particles in a plasma under the effect of a strong magnetic field. For each of them in a regime where the strength of the magnetic field is effectively stronger than that of collisions we first formally derive asymptotically reduced models. In this regime, strong anisotropic phenomena occur; while equilibrium along magnetic field lines is asymptotically reached our asymptotic models capture a non trivial dynamics in the perpendicular directions. We do check that in any case the obtained asymptotic model defines a well-posed dynamical system and when self consistent electric fields are neglected we provide a rigorous mathematical justification of the formally derived systems. In this last step we provide a complete control on solutions by developing anisotropic hypocoercive estimates.

Citation: Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024
References:
[1]

M. Badsi and M. Herda, Modelling and simulating a multispecies plasma, In CEMRACS 2014-Numerical Modeling of Plasmas, volume 53 of ESAIM Proc. Surveys, EDP Sci., Les Ulis, 53 (2016), 22–37. doi: 10.1051/proc/201653002.  Google Scholar

[2]

C. BardosF. GolseT. T. Nguyen and R. Sentis, The Maxwell-Boltzmann approximation for ion kinetic modeling, Phys. D, 376/377 (2018), 94-107.  doi: 10.1016/j.physd.2017.10.014.  Google Scholar

[3] P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, 2006.   Google Scholar
[4]

M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. straight magnetic field lines, HAL preprint, hal-01683869, 2018. doi: 10.1137/070689383.  Google Scholar

[5]

F. Bouchut, Global weak solution of the Vlasov-Poisson system for small electrons mass, Comm. Partial Differential Equations, 16 (1991), 1337-1365.  doi: 10.1080/03605309108820802.  Google Scholar

[6]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.   Google Scholar

[7]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, volume 4 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000. Edited and with a foreword by Benoît Perthame and Laurent Desvillettes.  Google Scholar

[8]

L. CaffarelliJ. DolbeaultP. A. Markowich and C. Schmeiser, On Maxwellian equilibria of insulated semiconductors, Interfaces Free Bound., 2 (2000), 331-339.  doi: 10.4171/IFB/23.  Google Scholar

[9]

A. de CeccoF. DeluzetC. Negulescu and S. Possanner, Asymptotic transition from kinetic to adiabatic electrons along magnetic field lines, Multiscale Model. Simul., 15 (2017), 309-338.  doi: 10.1137/15M1043686.  Google Scholar

[10]

J.-Yves Chemin, Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie.  Google Scholar

[11]

C. Cheverry, Can one hear whistler waves?, Comm. Math. Phys., 338 (2015), 641-703.  doi: 10.1007/s00220-015-2389-6.  Google Scholar

[12]

C. Cheverry, Anomalous transport, J. Differential Equations, 262 (2017), 2987-3033.  doi: 10.1016/j.jde.2016.11.012.  Google Scholar

[13]

S. De MoorL. Miguel Rodrigues and J. Vovelle, Invariant measures for a stochastic Fokker-Planck equation, Kinet. Relat. Models, 11 (2018), 357-395.  doi: 10.3934/krm.2018017.  Google Scholar

[14]

P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci., 8 (1986), 533-558.  doi: 10.1002/mma.1670080135.  Google Scholar

[15]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures, In Material Substructures in Complex Bodies, 2007, 1–62. doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[16]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: formal derivation, J. Stat. Phys., 165 (2016), 765-784.  doi: 10.1007/s10955-016-1645-2.  Google Scholar

[17]

P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Methods Appl. Sci., 6 (1996), 405-436.  doi: 10.1142/S0218202596000158.  Google Scholar

[18]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory Statist. Phys., 25 (1996), 595-633.  doi: 10.1080/00411459608222915.  Google Scholar

[19]

J. Dolbeault, Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system, Math. Models Methods Appl. Sci., 1 (1991), 183-208.  doi: 10.1142/S0218202591000113.  Google Scholar

[20]

J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states), J. Math. Pures Appl. (9), 78 (1999), 121–157. doi: 10.1016/S0021-7824(01)80006-4.  Google Scholar

[21]

J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.  Google Scholar

[22]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.  Google Scholar

[23]

F. Filbet and L. M. Rodrigues, Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., 55 (2017), 2416-2443.  doi: 10.1137/17M1113229.  Google Scholar

[24]

F. Filbet and L. M. Rodrigues, Asymptotics of the three dimensional Vlasov equation in the large magnetic field limit, arXiv preprint, arXiv: 1811.09087, 2018. Google Scholar

[25]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the VlasovPoisson system with a strong external magnetic field, Asymptot. Anal., 18 (1998), 193-213.   Google Scholar

[26]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[27]

R. J Goldston and P. H. Rutherford, Introduction to Plasma Physics, CRC Press, 1995. Google Scholar

[28]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791–817. doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[29]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[30]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2005. doi: 10.1007/b104762.  Google Scholar

[31]

F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 244 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[32]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.  doi: 10.1007/s00205-003-0276-3.  Google Scholar

[33]

M. Herda, On massless electron limit for a multispecies kinetic system with external magnetic field, J. Differential Equations, 260 (2016), 7861-7891.  doi: 10.1016/j.jde.2016.02.005.  Google Scholar

[34]

M. Herda and L. Miguel Rodrigues, Large-time behavior of solutions to Vlasov-PoissonFokker-Planck equations: From evanescent collisions to diffusive limit, J. Stat. Phys., 170 (2018), 895-931.  doi: 10.1007/s10955-018-1963-7.  Google Scholar

[35]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, volume 431 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[36]

A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.  Google Scholar

[37]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, volume 96 of Applied Mathematical Sciences., Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[38]

É. Miot, On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system, arXiv preprint, arXiv: 1603.04502, 2016. Google Scholar

[39]

K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion, volume 38., Springer, 2006. Google Scholar

[40]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.  doi: 10.1088/0951-7715/19/4/011.  Google Scholar

[41]

C. Negulescu and S. Possanner, Closure of the strongly magnetized electron fluid equations in the adiabatic regime, Multiscale Model. Simul., 14 (2016), 839-873.  doi: 10.1137/15M1027309.  Google Scholar

[42]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[43]

S. Possanner, Gyrokinetics from variational averaging: Existence and error bounds, J. Math. Phys., 59 (2018), 082702, 34pp. doi: 10.1063/1.5018354.  Google Scholar

[44]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.  Google Scholar

[45]

G. Rein, Collisionless kinetic equations from astrophysics—the Vlasov-Poisson system, In Handbook of Differential Equations: Evolutionary Equations. Vol. III, Handb. Differ. Equ., pages 383–476. Elsevier/North-Holland, Amsterdam, 2007. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[46]

L. Saint-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl. (9), 81 (2002), 379–399. doi: 10.1016/S0021-7824(01)01245-4.  Google Scholar

[47]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[48]

E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.  Google Scholar

[49]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

show all references

References:
[1]

M. Badsi and M. Herda, Modelling and simulating a multispecies plasma, In CEMRACS 2014-Numerical Modeling of Plasmas, volume 53 of ESAIM Proc. Surveys, EDP Sci., Les Ulis, 53 (2016), 22–37. doi: 10.1051/proc/201653002.  Google Scholar

[2]

C. BardosF. GolseT. T. Nguyen and R. Sentis, The Maxwell-Boltzmann approximation for ion kinetic modeling, Phys. D, 376/377 (2018), 94-107.  doi: 10.1016/j.physd.2017.10.014.  Google Scholar

[3] P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, 2006.   Google Scholar
[4]

M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. straight magnetic field lines, HAL preprint, hal-01683869, 2018. doi: 10.1137/070689383.  Google Scholar

[5]

F. Bouchut, Global weak solution of the Vlasov-Poisson system for small electrons mass, Comm. Partial Differential Equations, 16 (1991), 1337-1365.  doi: 10.1080/03605309108820802.  Google Scholar

[6]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.   Google Scholar

[7]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, volume 4 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000. Edited and with a foreword by Benoît Perthame and Laurent Desvillettes.  Google Scholar

[8]

L. CaffarelliJ. DolbeaultP. A. Markowich and C. Schmeiser, On Maxwellian equilibria of insulated semiconductors, Interfaces Free Bound., 2 (2000), 331-339.  doi: 10.4171/IFB/23.  Google Scholar

[9]

A. de CeccoF. DeluzetC. Negulescu and S. Possanner, Asymptotic transition from kinetic to adiabatic electrons along magnetic field lines, Multiscale Model. Simul., 15 (2017), 309-338.  doi: 10.1137/15M1043686.  Google Scholar

[10]

J.-Yves Chemin, Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie.  Google Scholar

[11]

C. Cheverry, Can one hear whistler waves?, Comm. Math. Phys., 338 (2015), 641-703.  doi: 10.1007/s00220-015-2389-6.  Google Scholar

[12]

C. Cheverry, Anomalous transport, J. Differential Equations, 262 (2017), 2987-3033.  doi: 10.1016/j.jde.2016.11.012.  Google Scholar

[13]

S. De MoorL. Miguel Rodrigues and J. Vovelle, Invariant measures for a stochastic Fokker-Planck equation, Kinet. Relat. Models, 11 (2018), 357-395.  doi: 10.3934/krm.2018017.  Google Scholar

[14]

P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci., 8 (1986), 533-558.  doi: 10.1002/mma.1670080135.  Google Scholar

[15]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures, In Material Substructures in Complex Bodies, 2007, 1–62. doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[16]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: formal derivation, J. Stat. Phys., 165 (2016), 765-784.  doi: 10.1007/s10955-016-1645-2.  Google Scholar

[17]

P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Methods Appl. Sci., 6 (1996), 405-436.  doi: 10.1142/S0218202596000158.  Google Scholar

[18]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory Statist. Phys., 25 (1996), 595-633.  doi: 10.1080/00411459608222915.  Google Scholar

[19]

J. Dolbeault, Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system, Math. Models Methods Appl. Sci., 1 (1991), 183-208.  doi: 10.1142/S0218202591000113.  Google Scholar

[20]

J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states), J. Math. Pures Appl. (9), 78 (1999), 121–157. doi: 10.1016/S0021-7824(01)80006-4.  Google Scholar

[21]

J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.  Google Scholar

[22]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.  Google Scholar

[23]

F. Filbet and L. M. Rodrigues, Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., 55 (2017), 2416-2443.  doi: 10.1137/17M1113229.  Google Scholar

[24]

F. Filbet and L. M. Rodrigues, Asymptotics of the three dimensional Vlasov equation in the large magnetic field limit, arXiv preprint, arXiv: 1811.09087, 2018. Google Scholar

[25]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the VlasovPoisson system with a strong external magnetic field, Asymptot. Anal., 18 (1998), 193-213.   Google Scholar

[26]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[27]

R. J Goldston and P. H. Rutherford, Introduction to Plasma Physics, CRC Press, 1995. Google Scholar

[28]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791–817. doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[29]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, third edition, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[30]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2005. doi: 10.1007/b104762.  Google Scholar

[31]

F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 244 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[32]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.  doi: 10.1007/s00205-003-0276-3.  Google Scholar

[33]

M. Herda, On massless electron limit for a multispecies kinetic system with external magnetic field, J. Differential Equations, 260 (2016), 7861-7891.  doi: 10.1016/j.jde.2016.02.005.  Google Scholar

[34]

M. Herda and L. Miguel Rodrigues, Large-time behavior of solutions to Vlasov-PoissonFokker-Planck equations: From evanescent collisions to diffusive limit, J. Stat. Phys., 170 (2018), 895-931.  doi: 10.1007/s10955-018-1963-7.  Google Scholar

[35]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, volume 431 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[36]

A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.  Google Scholar

[37]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, volume 96 of Applied Mathematical Sciences., Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[38]

É. Miot, On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system, arXiv preprint, arXiv: 1603.04502, 2016. Google Scholar

[39]

K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion, volume 38., Springer, 2006. Google Scholar

[40]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.  doi: 10.1088/0951-7715/19/4/011.  Google Scholar

[41]

C. Negulescu and S. Possanner, Closure of the strongly magnetized electron fluid equations in the adiabatic regime, Multiscale Model. Simul., 14 (2016), 839-873.  doi: 10.1137/15M1027309.  Google Scholar

[42]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[43]

S. Possanner, Gyrokinetics from variational averaging: Existence and error bounds, J. Math. Phys., 59 (2018), 082702, 34pp. doi: 10.1063/1.5018354.  Google Scholar

[44]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.  Google Scholar

[45]

G. Rein, Collisionless kinetic equations from astrophysics—the Vlasov-Poisson system, In Handbook of Differential Equations: Evolutionary Equations. Vol. III, Handb. Differ. Equ., pages 383–476. Elsevier/North-Holland, Amsterdam, 2007. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[46]

L. Saint-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl. (9), 81 (2002), 379–399. doi: 10.1016/S0021-7824(01)01245-4.  Google Scholar

[47]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[48]

E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.  Google Scholar

[49]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[1]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[2]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[3]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[4]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[5]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[6]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[7]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[8]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[9]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[10]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[11]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic & Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[14]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[15]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[16]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[17]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[18]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic & Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[19]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[20]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (29)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]