We consider a semi-infinite expanse of a rarefied gas bounded by an infinite plane wall. The temperature of the wall is $ T_0 $, and the gas is initially in equilibrium with density $ \rho_0 $ and temperature $ T_0 $. The temperature of the wall is suddenly changed to $ T_w $ at time $ t = 0 $ and is kept at $ T_w $ afterward. We study the quantitative short time behavior of the gas in response to the abrupt change of the wall temperature on the basis of the linearized Boltzmann equation. Our approach is based on a straightforward calculation of the exact formulas derived by Duhamel's integral. Our method allows us to establish the pointwise estimates of the microscopic distribution and the macroscopic variables in short time. We show that the short-time solution consists of the free molecular flow and its perturbation, which exhibits logarithmic singularities along the characteristic line and on the boundary.
Citation: |
[1] |
K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107.
doi: 10.3934/krm.2011.4.87.![]() ![]() ![]() |
[2] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar couette flow, Kinet. Relat. Models, 4 (2011), 109-138.
doi: 10.3934/krm.2011.4.109.![]() ![]() ![]() |
[3] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh enard convective solutions of the Boltzmann equation, Arch. Rational Mech. Anal, 198 (2010), 125-187.
doi: 10.1007/s00205-010-0292-z.![]() ![]() ![]() |
[4] |
L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated Lq -solutions and hydrodynamic limits, J. Stat. Phys, 118 (2005), 849-881.
doi: 10.1007/s10955-004-2708-3.![]() ![]() ![]() |
[5] |
C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() |
[6] |
C.-C. Chen, I.-K. Chen, T.-P. Liu and Y. Sone, Thermal transpiration for the linearized Boltzmann equation, Commun. Pure Appl. Math, 60 (2007), 147-163.
doi: 10.1002/cpa.20167.![]() ![]() ![]() |
[7] |
R. Esposito, Y. Guo, C. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys, 323 (2013), 177-239.
doi: 10.1007/s00220-013-1766-2.![]() ![]() ![]() |
[8] |
R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), Art. 1,119 pp, https://doi.org/10.1007/s40818-017-0037-5.
doi: 10.1007/s40818-017-0037-5.![]() ![]() ![]() |
[9] |
R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Commun. Math. Phys, 160 (1994), 49-80.
doi: 10.1007/BF02099789.![]() ![]() ![]() |
[10] |
H. Grad, Asymptotic theory of the Boltzmann equation, Ⅱ, Int. Symp. on Rarefied Gas Dynamics, Third Symp., 1 (1962), 26-59.
![]() ![]() |
[11] |
H.-W. Kuo, T.-P. Liu and S. E. Noh, Mixture Lemma, Bulletin, Inst. Math., Academia Sinica (N.S.), 5 (2010), 1-10.
![]() ![]() |
[12] |
H.-W. Kuo, The initial layer for Rayleigh problem, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 137-170.
doi: 10.3934/dcdsb.2011.15.137.![]() ![]() ![]() |
[13] |
H.-W. Kuo, T.-P. Liu and L.-C. Tsai, Free molecular flow with boundary effect, Comm. Math. Phys., 318 (2013), 375-409.
doi: 10.1007/s00220-013-1662-9.![]() ![]() ![]() |
[14] |
H.-W. Kuo, T.-P. Liu and L.-C. Tsai, Equilibrating effects of boundary and collision in rarefied gases, Comm. Math. Phys., 328 (2014), 421-480.
doi: 10.1007/s00220-014-2042-9.![]() ![]() ![]() |
[15] |
H.-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, J. Stat. Phys., 161 (2015), 743-800.
doi: 10.1007/s10955-015-1355-1.![]() ![]() ![]() |
[16] |
H.-W. Kuo, Asymptotic behavior for Rayleigh problem based on kinetic theory, J. Stat. Phys., 166 (2017), 1247-1275.
doi: 10.1007/s10955-017-1717-y.![]() ![]() ![]() |
[17] |
T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997.
doi: 10.1007/s00205-013-0640-x.![]() ![]() ![]() |
[18] |
Y. Sone, Kinetic theory analysis of the linearized Rayleigh problem, Phys. Fluids, 7 (1964), 470-471.
doi: 10.1063/1.1711221.![]() ![]() ![]() |
[19] |
Y. Sone, Effect of sudden change of wall temperature in rarefied gas, J. Phys. Soc. Japan, 20 (1965), 222-229.
doi: 10.1143/JPSJ.20.222.![]() ![]() |
[20] |
Y. Sone, Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh user Boston, Boston, MA, 2007.
doi: 10.1007/978-0-8176-4573-1.![]() ![]() ![]() |
[21] |
T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat. Phys., 140 (2010), 518-543.
doi: 10.1007/s10955-010-9997-5.![]() ![]() ![]() |
[22] |
S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle, I. Existence, Arch. Rational Mech. Anal., 84 (1983), 249-291.
doi: 10.1007/BF00281521.![]() ![]() ![]() |
[23] |
S.-H. Yu, Stochastic formulation for the initial-boundary value problems of the Boltzmann equation, Arch. Ration. Mech. Anal., 192 (2009), 217-274.
doi: 10.1007/s00205-008-0139-z.![]() ![]() ![]() |