August  2019, 12(4): 791-827. doi: 10.3934/krm.2019031

A non-linear kinetic model of self-propelled particles with multiple equilibria

1. 

Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy

2. 

Scuola Normale Superiore of Pisa, Piazza dei Cavalieri, 7 56126 Pisa, Italy

3. 

Heriot Watt University, Mathematics Department, Edinburgh, EH14 4AS, UK

4. 

Imperial College London, South Kensington Campus, London SW7 2AZ, UK

* Corresponding author: M. Ottobre, m.ottobre@hw.ac.uk

Received  July 2018 Published  May 2019

We introduce and analyse a continuum model for an interacting particle system of Vicsek type. The model is given by a non-linear kinetic partial differential equation (PDE) describing the time-evolution of the density ft, in the single particle phase-space, of a collection of interacting particles confined to move on the one-dimensional torus. The corresponding stochastic differential equation for the position and velocity of the particles is a conditional McKean-Vlasov type of evolution (conditional in the sense that the process depends on its own law through its own conditional expectation). In this paper, we study existence and uniqueness of the solution of the PDE in consideration. Challenges arise from the fact that the PDE is neither elliptic (the linear part is only hypoelliptic) nor in gradient form. Moreover, for some specific choices of the interaction function and for the simplified case in which the density profile does not depend on the spatial variable, we show that the model exhibits multiple stationary states (corresponding to the particles forming a coordinated clockwise/anticlockwise rotational motion) and we study convergence to such states as well. Finally, we prove mean-field convergence of an appropriate N-particles system to the solution of our PDE: more precisely, we show that the empirical measures of such a particle system converge weakly, as $N \to \infty $, to the solution of the PDE.

Citation: Paolo Buttà, Franco Flandoli, Michela Ottobre, Boguslaw Zegarlinski. A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic & Related Models, 2019, 12 (4) : 791-827. doi: 10.3934/krm.2019031
References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[2]

D. G Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations, 3 (1967), 1-14.  doi: 10.1016/0022-0396(67)90002-2.  Google Scholar

[3]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, PNAS, 105 (2008), 1232-1237.  doi: 10.1073/pnas.0711437105.  Google Scholar

[5]

A. B. T. BarbaroJ. A. CañizoJ. A. Carrillo and P. Degond, Phase Transitions in a Kinetic Flocking Model of Cucker-Smale Type, Multiscale Model. Simul. (SIAM), 14 (2016), 1063-1088.  doi: 10.1137/15M1043637.  Google Scholar

[6]

J. BarreD. Crisan and T. Goudon, Two-dimensional pseudo-gravity model: Particles motion in a non-potential singular force field, Trans. Amer. Math. Soc., 371 (2019), 2923-2962.  doi: 10.1090/tran/7638.  Google Scholar

[7]

J. BarreP. Degond and E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks, Multiscale Model. Simul. (SIAM), 15 (2017), 1294-1323.  doi: 10.1137/16M1085310.  Google Scholar

[8]

D. BenedettoE. Caglioti and M. Pulvirenti, A Kinetic equation for granular media, ESAIM Math. Mod. Num. Anal., 31 (1997), 615-641.  doi: 10.1051/m2an/1997310506151.  Google Scholar

[9]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non Maxwellian steady distribution for one-dimensional granular media, Jour. Stat. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[10]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov-Fokker-Planck equation, ESAIM Math. Mod. Num. Anal., 44 (2010), 867-884.  doi: 10.1051/m2an/2010045.  Google Scholar

[11]

M. BossyJ. F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models, Probab. Theory Relat. Fields, 151 (2011), 319-351.  doi: 10.1007/s00440-010-0301-z.  Google Scholar

[12]

J. BuhlD. J. T. SumpterI. D. CouzinJ. J. HaleE. DesplandE. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.  doi: 10.1126/science.1125142.  Google Scholar

[13]

P. Buttà and J. L. Lebowitz, Hydrodynamic Limit of Brownian Particles Interacting with Short- and Long-Range Forces, J. Statist. Phys., 94 (1999), 653-694.  doi: 10.1023/A:1004512807858.  Google Scholar

[14] S. CamazineJ.-L. DeneubourgN. R. FranksJ. SneydG. Theraulaz and E. Bonabeau, Self-organization in Biological Systems, Princeton University Press, 2003.   Google Scholar
[15]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[16]

J. A. CarrilloR. Eftimie and Ho ffmann, Non-local kinetic and macroscopic models for self-organised animal aggregations, Kinet. Relat. Models, 8 (2015), 413-441.  doi: 10.3934/krm.2015.8.413.  Google Scholar

[17]

J. A. CarrilloM. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[18]

T. Cass, D. Crisan, P. Dobson and M. Ottobre, Long-time behaviour of degenerate diffusions: UFG-type SDEs and time-inhomogeneous hypoelliptic processes, preprint, arXiv: 1805.01350. Google Scholar

[19]

N. Champagnat and S. Málárd, Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., 55 (2007), 147-188.  doi: 10.1007/s00285-007-0072-z.  Google Scholar

[20]

I. D. CouzinJ. KrauseN. R. Franks and S. A. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[21]

F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[23]

A. Czirók, A. L. Barabási and T. Vicsek, Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension, Phys. Rev. Lett., 82 (1999), 209. Google Scholar

[24]

A. Czirók and T. Vicsek, Collective behavior of interacting self-propelled particle., Physica A, 281 (2000), 17-29.   Google Scholar

[25]

G. Da Prato and M. Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, Seminar on Stochastic Analysis, Random Fields and Applications V, 115–122, Progr. Probab., 59, Birkhäuser, Basel, 2008. doi: 10.1007/978-3-7643-8458-6_7.  Google Scholar

[26]

P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions, Ann. Sci. cole Norm. Sup. (4), 19 (1986), 519-542.  doi: 10.24033/asens.1516.  Google Scholar

[27]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[28]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[29]

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review, J. Math. Biol., 65 (2012), 35-75.  doi: 10.1007/s00285-011-0452-2.  Google Scholar

[30]

R. EftimieG. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proceedings of the National Academy of Sciences, 104 (2007), 6974-6979.  doi: 10.1073/pnas.0611483104.  Google Scholar

[31]

F. Flandoli, E. Priola and G. Zanco, A mean-field model with discontinuous coefficients for neurons with spatial interaction, preprint, arXiv: 1708.04156. Google Scholar

[32]

F. Flandoli and V. Capasso, On the mean field approximation of a stochastic model of tumor-induced angiogenesis, preprint, arXiv: 1708.03830. Google Scholar

[33]

J. GarnierG. Papanicolaou and T.-W. Yang, Mean field model for collective motion bistability, Discr. Cont. Dyn. Syst. B, 24 (2019), 851-879.  doi: 10.3934/dcdsb.2018210.  Google Scholar

[34]

M. Gianfelice and E. Orlandi, Dynamics and kinetic limit for a system of noiseless d-dimensional Vicsek-type particles, Networks and Heterogeneous Media, 9 (2014), 269-297.  doi: 10.3934/nhm.2014.9.269.  Google Scholar

[35]

S. N. Gomes and G. Pavliotis, Mean field limits for interacting diffusions in a two-scale potential, J. Nonlinear Sci, 28 (2018), 905-941.  doi: 10.1007/s00332-017-9433-y.  Google Scholar

[36]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[37]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, Springer, 2005. doi: 10.1007/b104762.  Google Scholar

[38]

F. Herau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 224 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[39]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[40]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Springer, Berlin, 1999 doi: 10.1007/978-3-662-03752-2.  Google Scholar

[41]

V. KontisM. Ottobre and B. Zegarlinski, Markov semigroups with hypocoercive-type generator in infinite dimensions: Ergodicity and smoothing, J. Funct. Anal., 270 (2016), 3173-3223.  doi: 10.1016/j.jfa.2016.02.005.  Google Scholar

[42]

M. KunzeL. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 362 (2010), 169-198.  doi: 10.1090/S0002-9947-09-04738-2.  Google Scholar

[43]

H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2000), 017101. doi: 10.1103/PhysRevE.63.017101.  Google Scholar

[44]

R. LukemanY. X. Li and L. Edelstein-Keshet, A conceptual model for milling formations in biological aggregates, Bull Math Biol., 71 (2009), 352-382.  doi: 10.1007/s11538-008-9365-7.  Google Scholar

[45]

P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1-29.   Google Scholar

[46]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[47]

C. Nee, Sharp Gradient Bounds for the Diffusion Semigroup, PhD Thesis, Imperial College London, 2011. Google Scholar

[48]

S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Comm. Math. Phys., 135 (1991), 355-378.  doi: 10.1007/BF02098047.  Google Scholar

[49]

M. OttobreG. A. Pavliotis and K. Pravda-Starov, Exponential return to equilibrium for hypoelliptic quadratic systems, J. Funct. Anal., 262 (2012), 4000-4039.  doi: 10.1016/j.jfa.2012.02.008.  Google Scholar

[50]

J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 284 (1999), 99-101.  doi: 10.1126/science.284.5411.99.  Google Scholar

[51]

P. J. Smith, A recursive formulation of the old problem of obtaining moments from cumulants and vice versa, Amer. Statist., 49 (1995), 217-218.  doi: 10.2307/2684642.  Google Scholar

[52] D. W. Stroock, Partial Differential Equations for Probabilists, Cambridge Studies in Advanced Mathematics 112, Cambridge University Press, Cambridge, 2008.  doi: 10.1017/CBO9780511755255.  Google Scholar
[53]

J. Toner and Y. Tu, Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together, Phys. Rev. Lett., 75 (1995), 4326. Google Scholar

[54]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[55]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[56]

C. M. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[57]

C. Tremoulet, Hydrodynamic limit for interacting Ornstein hlenbeck particles, Stochastic Process. Appl., 102 (2002), 139-158.  doi: 10.1016/S0304-4149(02)00174-6.  Google Scholar

[58]

S. R. S. Varadhan, Scaling limits for interacting diffusions, Comm. Math. Phys., 135 (1991), 313-353.  doi: 10.1007/BF02098046.  Google Scholar

[59]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[60]

T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[61]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202, 2009. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

show all references

References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[2]

D. G Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations, 3 (1967), 1-14.  doi: 10.1016/0022-0396(67)90002-2.  Google Scholar

[3]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, PNAS, 105 (2008), 1232-1237.  doi: 10.1073/pnas.0711437105.  Google Scholar

[5]

A. B. T. BarbaroJ. A. CañizoJ. A. Carrillo and P. Degond, Phase Transitions in a Kinetic Flocking Model of Cucker-Smale Type, Multiscale Model. Simul. (SIAM), 14 (2016), 1063-1088.  doi: 10.1137/15M1043637.  Google Scholar

[6]

J. BarreD. Crisan and T. Goudon, Two-dimensional pseudo-gravity model: Particles motion in a non-potential singular force field, Trans. Amer. Math. Soc., 371 (2019), 2923-2962.  doi: 10.1090/tran/7638.  Google Scholar

[7]

J. BarreP. Degond and E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks, Multiscale Model. Simul. (SIAM), 15 (2017), 1294-1323.  doi: 10.1137/16M1085310.  Google Scholar

[8]

D. BenedettoE. Caglioti and M. Pulvirenti, A Kinetic equation for granular media, ESAIM Math. Mod. Num. Anal., 31 (1997), 615-641.  doi: 10.1051/m2an/1997310506151.  Google Scholar

[9]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non Maxwellian steady distribution for one-dimensional granular media, Jour. Stat. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[10]

F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov-Fokker-Planck equation, ESAIM Math. Mod. Num. Anal., 44 (2010), 867-884.  doi: 10.1051/m2an/2010045.  Google Scholar

[11]

M. BossyJ. F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models, Probab. Theory Relat. Fields, 151 (2011), 319-351.  doi: 10.1007/s00440-010-0301-z.  Google Scholar

[12]

J. BuhlD. J. T. SumpterI. D. CouzinJ. J. HaleE. DesplandE. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.  doi: 10.1126/science.1125142.  Google Scholar

[13]

P. Buttà and J. L. Lebowitz, Hydrodynamic Limit of Brownian Particles Interacting with Short- and Long-Range Forces, J. Statist. Phys., 94 (1999), 653-694.  doi: 10.1023/A:1004512807858.  Google Scholar

[14] S. CamazineJ.-L. DeneubourgN. R. FranksJ. SneydG. Theraulaz and E. Bonabeau, Self-organization in Biological Systems, Princeton University Press, 2003.   Google Scholar
[15]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[16]

J. A. CarrilloR. Eftimie and Ho ffmann, Non-local kinetic and macroscopic models for self-organised animal aggregations, Kinet. Relat. Models, 8 (2015), 413-441.  doi: 10.3934/krm.2015.8.413.  Google Scholar

[17]

J. A. CarrilloM. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[18]

T. Cass, D. Crisan, P. Dobson and M. Ottobre, Long-time behaviour of degenerate diffusions: UFG-type SDEs and time-inhomogeneous hypoelliptic processes, preprint, arXiv: 1805.01350. Google Scholar

[19]

N. Champagnat and S. Málárd, Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., 55 (2007), 147-188.  doi: 10.1007/s00285-007-0072-z.  Google Scholar

[20]

I. D. CouzinJ. KrauseN. R. Franks and S. A. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.  doi: 10.1038/nature03236.  Google Scholar

[21]

F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[22]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[23]

A. Czirók, A. L. Barabási and T. Vicsek, Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension, Phys. Rev. Lett., 82 (1999), 209. Google Scholar

[24]

A. Czirók and T. Vicsek, Collective behavior of interacting self-propelled particle., Physica A, 281 (2000), 17-29.   Google Scholar

[25]

G. Da Prato and M. Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, Seminar on Stochastic Analysis, Random Fields and Applications V, 115–122, Progr. Probab., 59, Birkhäuser, Basel, 2008. doi: 10.1007/978-3-7643-8458-6_7.  Google Scholar

[26]

P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions, Ann. Sci. cole Norm. Sup. (4), 19 (1986), 519-542.  doi: 10.24033/asens.1516.  Google Scholar

[27]

P. DegondJ.-G. LiuS. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[28]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[29]

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review, J. Math. Biol., 65 (2012), 35-75.  doi: 10.1007/s00285-011-0452-2.  Google Scholar

[30]

R. EftimieG. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proceedings of the National Academy of Sciences, 104 (2007), 6974-6979.  doi: 10.1073/pnas.0611483104.  Google Scholar

[31]

F. Flandoli, E. Priola and G. Zanco, A mean-field model with discontinuous coefficients for neurons with spatial interaction, preprint, arXiv: 1708.04156. Google Scholar

[32]

F. Flandoli and V. Capasso, On the mean field approximation of a stochastic model of tumor-induced angiogenesis, preprint, arXiv: 1708.03830. Google Scholar

[33]

J. GarnierG. Papanicolaou and T.-W. Yang, Mean field model for collective motion bistability, Discr. Cont. Dyn. Syst. B, 24 (2019), 851-879.  doi: 10.3934/dcdsb.2018210.  Google Scholar

[34]

M. Gianfelice and E. Orlandi, Dynamics and kinetic limit for a system of noiseless d-dimensional Vicsek-type particles, Networks and Heterogeneous Media, 9 (2014), 269-297.  doi: 10.3934/nhm.2014.9.269.  Google Scholar

[35]

S. N. Gomes and G. Pavliotis, Mean field limits for interacting diffusions in a two-scale potential, J. Nonlinear Sci, 28 (2018), 905-941.  doi: 10.1007/s00332-017-9433-y.  Google Scholar

[36]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[37]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, Springer, 2005. doi: 10.1007/b104762.  Google Scholar

[38]

F. Herau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 224 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[39]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[40]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Springer, Berlin, 1999 doi: 10.1007/978-3-662-03752-2.  Google Scholar

[41]

V. KontisM. Ottobre and B. Zegarlinski, Markov semigroups with hypocoercive-type generator in infinite dimensions: Ergodicity and smoothing, J. Funct. Anal., 270 (2016), 3173-3223.  doi: 10.1016/j.jfa.2016.02.005.  Google Scholar

[42]

M. KunzeL. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 362 (2010), 169-198.  doi: 10.1090/S0002-9947-09-04738-2.  Google Scholar

[43]

H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2000), 017101. doi: 10.1103/PhysRevE.63.017101.  Google Scholar

[44]

R. LukemanY. X. Li and L. Edelstein-Keshet, A conceptual model for milling formations in biological aggregates, Bull Math Biol., 71 (2009), 352-382.  doi: 10.1007/s11538-008-9365-7.  Google Scholar

[45]

P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1-29.   Google Scholar

[46]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[47]

C. Nee, Sharp Gradient Bounds for the Diffusion Semigroup, PhD Thesis, Imperial College London, 2011. Google Scholar

[48]

S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Comm. Math. Phys., 135 (1991), 355-378.  doi: 10.1007/BF02098047.  Google Scholar

[49]

M. OttobreG. A. Pavliotis and K. Pravda-Starov, Exponential return to equilibrium for hypoelliptic quadratic systems, J. Funct. Anal., 262 (2012), 4000-4039.  doi: 10.1016/j.jfa.2012.02.008.  Google Scholar

[50]

J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 284 (1999), 99-101.  doi: 10.1126/science.284.5411.99.  Google Scholar

[51]

P. J. Smith, A recursive formulation of the old problem of obtaining moments from cumulants and vice versa, Amer. Statist., 49 (1995), 217-218.  doi: 10.2307/2684642.  Google Scholar

[52] D. W. Stroock, Partial Differential Equations for Probabilists, Cambridge Studies in Advanced Mathematics 112, Cambridge University Press, Cambridge, 2008.  doi: 10.1017/CBO9780511755255.  Google Scholar
[53]

J. Toner and Y. Tu, Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together, Phys. Rev. Lett., 75 (1995), 4326. Google Scholar

[54]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[55]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[56]

C. M. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[57]

C. Tremoulet, Hydrodynamic limit for interacting Ornstein hlenbeck particles, Stochastic Process. Appl., 102 (2002), 139-158.  doi: 10.1016/S0304-4149(02)00174-6.  Google Scholar

[58]

S. R. S. Varadhan, Scaling limits for interacting diffusions, Comm. Math. Phys., 135 (1991), 313-353.  doi: 10.1007/BF02098046.  Google Scholar

[59]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[60]

T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[61]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202, 2009. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[1]

Razvan C. Fetecau, Beril Zhang. Self-organization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397-426. doi: 10.3934/jgm.2019020

[2]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[3]

Michele Gianfelice, Enza Orlandi. Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks & Heterogeneous Media, 2014, 9 (2) : 269-297. doi: 10.3934/nhm.2014.9.269

[4]

Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103

[5]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[6]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[7]

Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205

[8]

Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77

[9]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[10]

Laurent Boudin, Francesco Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic & Related Models, 2009, 2 (3) : 433-449. doi: 10.3934/krm.2009.2.433

[11]

Martin Parisot, Mirosław Lachowicz. A kinetic model for the formation of swarms with nonlinear interactions. Kinetic & Related Models, 2016, 9 (1) : 131-164. doi: 10.3934/krm.2016.9.131

[12]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[13]

José A. Carrillo, Raluca Eftimie, Franca Hoffmann. Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic & Related Models, 2015, 8 (3) : 413-441. doi: 10.3934/krm.2015.8.413

[14]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[15]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067

[16]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[17]

Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067

[18]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[19]

S.-I. Ei, M. Mimura, M. Nagayama. Interacting spots in reaction diffusion systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 31-62. doi: 10.3934/dcds.2006.14.31

[20]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (36)
  • HTML views (81)
  • Cited by (0)

[Back to Top]