August  2019, 12(4): 829-884. doi: 10.3934/krm.2019032

Well-posedness of Cauchy problem for Landau equation in critical Besov space

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China

2. 

Université de Rouen, CNRS UMR 6085, Laboratoire de Mathématiques, Saint-Etienne du Rouvray, 76801, France

3. 

School of Mathematics and Statistics, South-Central University for Nationalities, 430074, Wuhan, China

* Corresponding author: Hao-Guang Li

Received  July 2018 Published  May 2019

Fund Project: The first author is supported by the China Scholarship Council(CSC). The second author is supported by the Natural Science Foundation of China (11701578). The research of C.-J. Xu is supported by"The Fundamental Research Funds for Central Universities of China". The research of J. Xu is partially supported by the National Natural Science Foundation of China (11871274) and the Fundamental Research Funds for the Central Universities (NE2015005).

We study the Cauchy problem for the inhomogeneous non linear Landau equation with Maxwellian molecules. In perturbation framework, we establish the global existence of solution in spatially critical Besov spaces. Precisely, if the initial datum is a a small perturbation of the equilibrium distribution in the Chemin-Lerner space $\widetilde L_v^2\left( {B_{2,1}^{3/2}} \right)$, then the Cauchy problem of Landau equation admits a global solution belongs to $\widetilde L_t^\infty \widetilde L_v^2\left( {B_{2,1}^{3/2}} \right)$. The spectral property of Landau operator enables us to develop new trilinear estimates, which leads to the global energy estimate.

Citation: Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032
References:
[1]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.  Google Scholar

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys, 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.  Google Scholar

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅱ, Global existence for hard potential, Anal. Appl., 9 (2011), 113-134.  doi: 10.1142/S0219530511001777.  Google Scholar

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661.  doi: 10.1007/s00205-011-0432-0.  Google Scholar

[5]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅰ, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.  doi: 10.1016/j.jfa.2011.10.007.  Google Scholar

[6]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[7]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.  doi: 10.4171/RMI/436.  Google Scholar

[8]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7 (1988), 111-233.   Google Scholar

[9]

K. Carrapatoso, Exponential convergence to equalilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.  doi: 10.1007/BF02791256.  Google Scholar

[12]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[13]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[14]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[15]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[16]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials . H-theorem theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[18]

R.-J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_{\xi}(H^N_x)$, J. Differential Equations, 244 (2008), 3204-3234.  doi: 10.1016/j.jde.2007.11.006.  Google Scholar

[19]

R.-J. DuanS.-Q. Liu and J. Xu, Global well-posedness in spatially critical Besov space for the Boltzmann Equation, Arch. Ration. Mech. Anal., 220 (2016), 711-745.  doi: 10.1007/s00205-015-0940-4.  Google Scholar

[20]

M.-P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, M$\acute{e}$m. Soc. Math. Fr., 153 (2017), 137pp.  Google Scholar

[21]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.  doi: 10.1007/s00220-002-0729-9.  Google Scholar

[22]

L. Hsiao and H.-J. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315.  doi: 10.1090/S0033-569X-07-01053-8.  Google Scholar

[23]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648.  doi: 10.3934/krm.2013.6.625.  Google Scholar

[24]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831.  doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[25]

H.-G. Li and C.-J. Xu, The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, J. Differential Equations, 263 (2017), 5120-5150.  doi: 10.1016/j.jde.2017.06.010.  Google Scholar

[26]

H.-G. Li and C.-J. Xu, Cauchy problem for the spatially homogeneous Landau equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, Siam J. Math. Anal., 51 (2019), 532-564.  doi: 10.1137/17M115116X.  Google Scholar

[27]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation, Kinet. Relat. Models, 6 (2013), 715-727.  doi: 10.3934/krm.2013.6.715.  Google Scholar

[28]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617.  doi: 10.1016/j.jde.2009.01.028.  Google Scholar

[29]

Y. Morimoto and S. Sakamoto, Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, J. Differential Equations, 261 (2016), 4073-4134.  doi: 10.1016/j.jde.2016.06.017.  Google Scholar

[30]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.  doi: 10.1080/03605300600635004.  Google Scholar

[31]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983.  doi: 10.1142/S0218202598000433.  Google Scholar

[32]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.  doi: 10.1007/s002050050106.  Google Scholar

[33]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Differential Equations, 1 (1996), 793-816.   Google Scholar

[34]

J. Xu and S. Kawashima, Global classical solutions for partially dissipative hyperbolic system of balance laws, Arch. Ration. Mech. Anal., 211 (2014), 513-553.  doi: 10.1007/s00205-013-0679-8.  Google Scholar

show all references

References:
[1]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.  Google Scholar

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys, 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.  Google Scholar

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅱ, Global existence for hard potential, Anal. Appl., 9 (2011), 113-134.  doi: 10.1142/S0219530511001777.  Google Scholar

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661.  doi: 10.1007/s00205-011-0432-0.  Google Scholar

[5]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅰ, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.  doi: 10.1016/j.jfa.2011.10.007.  Google Scholar

[6]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[7]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.  doi: 10.4171/RMI/436.  Google Scholar

[8]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7 (1988), 111-233.   Google Scholar

[9]

K. Carrapatoso, Exponential convergence to equalilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.  doi: 10.1007/BF02791256.  Google Scholar

[12]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[13]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[14]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[15]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[16]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials . H-theorem theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[18]

R.-J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_{\xi}(H^N_x)$, J. Differential Equations, 244 (2008), 3204-3234.  doi: 10.1016/j.jde.2007.11.006.  Google Scholar

[19]

R.-J. DuanS.-Q. Liu and J. Xu, Global well-posedness in spatially critical Besov space for the Boltzmann Equation, Arch. Ration. Mech. Anal., 220 (2016), 711-745.  doi: 10.1007/s00205-015-0940-4.  Google Scholar

[20]

M.-P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, M$\acute{e}$m. Soc. Math. Fr., 153 (2017), 137pp.  Google Scholar

[21]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.  doi: 10.1007/s00220-002-0729-9.  Google Scholar

[22]

L. Hsiao and H.-J. Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math., 65 (2007), 281-315.  doi: 10.1090/S0033-569X-07-01053-8.  Google Scholar

[23]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648.  doi: 10.3934/krm.2013.6.625.  Google Scholar

[24]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff, J. Differential Equations, 256 (2014), 797-831.  doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[25]

H.-G. Li and C.-J. Xu, The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, J. Differential Equations, 263 (2017), 5120-5150.  doi: 10.1016/j.jde.2017.06.010.  Google Scholar

[26]

H.-G. Li and C.-J. Xu, Cauchy problem for the spatially homogeneous Landau equation with Shubin class initial datum and Gelfand-Shilov smoothing effect, Siam J. Math. Anal., 51 (2019), 532-564.  doi: 10.1137/17M115116X.  Google Scholar

[27]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation, Kinet. Relat. Models, 6 (2013), 715-727.  doi: 10.3934/krm.2013.6.715.  Google Scholar

[28]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617.  doi: 10.1016/j.jde.2009.01.028.  Google Scholar

[29]

Y. Morimoto and S. Sakamoto, Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, J. Differential Equations, 261 (2016), 4073-4134.  doi: 10.1016/j.jde.2016.06.017.  Google Scholar

[30]

C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.  doi: 10.1080/03605300600635004.  Google Scholar

[31]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983.  doi: 10.1142/S0218202598000433.  Google Scholar

[32]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.  doi: 10.1007/s002050050106.  Google Scholar

[33]

C. Villani, On the Cauchy problem for Landau equation: Sequential stability, global existence, Adv. Differential Equations, 1 (1996), 793-816.   Google Scholar

[34]

J. Xu and S. Kawashima, Global classical solutions for partially dissipative hyperbolic system of balance laws, Arch. Ration. Mech. Anal., 211 (2014), 513-553.  doi: 10.1007/s00205-013-0679-8.  Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[5]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[6]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[9]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[13]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[15]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[16]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[19]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[20]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (188)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]