[1]
|
F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, Journal of Computational Physics, 131 (1997), 267-279.
doi: 10.1006/jcph.1996.5572.
|
[2]
|
J. Berendsen, M. Burger and J.-F. Pietschmann, On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion, Nonlinear Analysis, 159 (2017), 10-39.
doi: 10.1016/j.na.2017.03.010.
|
[3]
|
M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM Journal on Scientific Computing, 34 (2012), B559–B583.
doi: 10.1137/110853807.
|
[4]
|
M. Bruna, M. Burger, H. Ranetbauer and M.-T. Wolfram, Cross-diffusion systems with excluded-volume effects and asymptotic gradient flow structures, Journal of Nonlinear Science, 27 (2017), 687-719.
doi: 10.1007/s00332-016-9348-z.
|
[5]
|
M. Burger, J. A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations, Kinetic and Related Models, 3 (2010), 59-83.
doi: 10.3934/krm.2010.3.59.
|
[6]
|
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Communications in Computational Physics, 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a.
|
[7]
|
J. A. Carrillo, K. Craig and F. S. Patacchini, A blob method for diffusion, Calc. Var. Partial Differential Equations, 58 (2019), Art. 53, 53 pp, arXiv: 1709.09195.
doi: 10.1007/s00526-019-1486-3.
|
[8]
|
J. A. Carrillo, F. Filbet and M. Schmidtchen, Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, preprint, arXiv: 1804.04385.
|
[9]
|
J. A. Carrillo, Y. Huang, F. S. Patacchini and G. Wolansky, Numerical study of a particle method for gradient flows, Kinetic and Related Models, 10 (2017), 613-641.
doi: 10.3934/krm.2017025.
|
[10]
|
J. A. Carrillo, B. Düring, D. Matthes and D. McCormick, A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes, Journal of Scientific Computing, 75 (2018), 1463-1499.
doi: 10.1007/s10915-017-0594-5.
|
[11]
|
J. A. Carrillo and J. S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM Journal on Scientific Computing, 31 (2009/10), 4305-4329.
doi: 10.1137/080739574.
|
[12]
|
J. A. Carrillo, H. Ranetbauer and M.-T. Wolfram, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms, Journal of Computational Physics, 327 (2016), 186-202.
doi: 10.1016/j.jcp.2016.09.040.
|
[13]
|
T. Chen and C.-W. Shu, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, Journal of Computational Physics, 345 (2017), 427-461.
doi: 10.1016/j.jcp.2017.05.025.
|
[14]
|
Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Mathematics of Computation, 77 (2008), 699-730.
doi: 10.1090/S0025-5718-07-02045-5.
|
[15]
|
B. Cockburn, S. Hou and C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ: The multidimensional case, Mathematics of Computation, 54 (1990), 545-581.
doi: 10.2307/2008501.
|
[16]
|
B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one-dimensional systems, Journal of Computational Physics, 84 (1989), 90-113.
doi: 10.1016/0021-9991(89)90183-6.
|
[17]
|
B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: General framework, Mathematics of Computation, 52 (1989), 411-435.
doi: 10.2307/2008474.
|
[18]
|
B. Cockburn and C.-W. Shu, The Runge–Kutta local projection ${P}^1$-discontinuous-Galerkin finite element method for scalar conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 25 (1991), 337-361.
doi: 10.1051/m2an/1991250303371.
|
[19]
|
B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712.
|
[20]
|
B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141 (1998), 199-224.
doi: 10.1006/jcph.1998.5892.
|
[21]
|
K. Craig and A. Bertozzi, A blob method for the aggregation equation, Mathematics of Computation, 85 (2016), 1681-1717.
doi: 10.1090/mcom3033.
|
[22]
|
J. Escher, M. Hillairet, P. Laurencot and C. Walker, Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant, Indiana University Mathematics Journal, 60 (2011), 1975-2019.
doi: 10.1512/iumj.2011.60.4447.
|
[23]
|
S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Review, 43 (2001), 89–112.
doi: 10.1137/S003614450036757X.
|
[24]
|
S. Hittmeir, H. Ranetbauer, C. Schmeiser and M.-T. Wolfram, Derivation and analysis of continuum models for crossing pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 27 (2017), 1301-1325.
doi: 10.1142/S0218202517400164.
|
[25]
|
T. L. Jackson and H. M. Byrne, A mechanical model of tumor encapsulation and transcapsular spread, Mathematical Biosciences, 180 (2002), 307-328.
doi: 10.1016/S0025-5564(02)00118-9.
|
[26]
|
O. Jensen and J. Grotberg, Insoluble surfactant spreading on a thin viscous film: Shock evolution and film rupture, Journal of Fluid Mechanics, 240 (1992), 259-288.
doi: 10.1017/S0022112092000090.
|
[27]
|
O. Junge, D. Matthes and H. Osberger, A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in multiple space dimensions, SIAM Journal on Numerical Analysis, 55 (2017), 419-443.
doi: 10.1137/16M1056560.
|
[28]
|
A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963.
|
[29]
|
A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250009, 26pp.
doi: 10.1142/S0218202512500091.
|
[30]
|
A. Jüngel and N. Zamponi, Qualitative behavior of solutions to cross-diffusion systems from population dynamics, Journal of Mathematical Analysis and Applications, 440 (2016), 794-809.
doi: 10.1016/j.jmaa.2016.03.076.
|
[31]
|
A. Jüngel and N. Zamponi, Analysis of degenerate cross-diffusion population models with volume filling, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 34 (2017), 1-29.
doi: 10.1016/j.anihpc.2015.08.003.
|
[32]
|
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.
|
[33]
|
H. Liu and H. Yu, The entropy satisfying discontinuous Galerkin method for Fokker-Planck equations, Journal of Scientific Computing, 62 (2015), 803-830.
doi: 10.1007/s10915-014-9878-1.
|
[34]
|
H. Liu and Z. Wang, An entropy satisfying discontinuous Galerkin method for nonlinear Fokker–Planck equations, Journal of Scientific Computing, 68 (2016), 1217-1240.
doi: 10.1007/s10915-016-0174-0.
|
[35]
|
H. Liu and Z. Wang, A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems, Journal of Computational Physics, 328 (2017), 413-437.
doi: 10.1016/j.jcp.2016.10.008.
|
[36]
|
H. Liu and J. Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM Journal on Numerical Analysis, 47 (2009), 675-698.
doi: 10.1137/080720255.
|
[37]
|
A. A. H. Oulhaj, A finite volume scheme for a seawater intrusion model with cross-diffusion, in Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects (eds. C. Cancès and P. Omnes), Springer International Publishing, 199 (2017), 421–429.
|
[38]
|
W. H. Reed and T. Hill, Triangular mesh methods for the neutron transport equation, Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.
|
[39]
|
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, Journal of Theoretical Biology, 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3.
|
[40]
|
S. Srinivasana, J. Poggiea and X. Zhang, A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations, Journal of Computational Physics, 366 (2018), 120-143.
doi: 10.1016/j.jcp.2018.04.002.
|
[41]
|
Z. Sun, J. A. Carrillo and C.-W. Shu, A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, Journal of Computational Physics, 352 (2018), 76-104.
doi: 10.1016/j.jcp.2017.09.050.
|
[42]
|
Z. Sun, J. A. Carrillo and C.-W. Shu, An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems, preprint, arXiv: 1810.03221.
|
[43]
|
X. Zhang, On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations, Journal of Computational Physics, 328 (2017), 301-343.
doi: 10.1016/j.jcp.2016.10.002.
|
[44]
|
X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, Journal of Computational Physics, 229 (2010), 3091-3120.
doi: 10.1016/j.jcp.2009.12.030.
|