In this paper, we consider $ N $ identical spherical particles sedimenting in a uniform gravitational field. Particle rotation is included in the model while fluid and particle inertia are neglected. Using the method of reflections, we extend the investigation of [
Citation: |
[1] |
G. K. Batchelor, Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., 52 (1972), 245-268.
![]() |
[2] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22 (2009), 1247-1271.
![]() ![]() |
[3] |
T. Champion, L. D. Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAMJ. Math. Anal, 40 (2008), 1-20.
doi: 10.1137/07069938X.![]() ![]() ![]() |
[4] |
L. Desvillettes, F. Golse and V. Ricci, The mean field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008), 941-967.
doi: 10.1007/s10955-008-9521-3.![]() ![]() ![]() |
[5] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Second edition edition, Springer Monographs in Mathematics.Springer, New York, 2011, Steady-state problems.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
[6] |
E. Guazzelli and J. F. Morris, A Physical Introduction to Suspension Dynamics, Cambridge Texts In Applied Mathematics, 2012.
![]() ![]() |
[7] |
K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.
doi: 10.1007/BF03167396.![]() ![]() ![]() |
[8] |
M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384.
doi: 10.1142/S0218202509003814.![]() ![]() ![]() |
[9] |
M. Hauray and P. E. Jabin, Particle approximation of Vlasov equations with singular forces: Propagation of chaos, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 891-940.
doi: 10.24033/asens.2261.![]() ![]() ![]() |
[10] |
M. Hillairet, On the homogenization of the stokes problem in a perforated domain, Arch Rational Mech Anal, 230 (2018), 1179-1228.
doi: 10.1007/s00205-018-1268-7.![]() ![]() ![]() |
[11] |
R. M. Höfer, Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., 360 (2018), 55-101.
doi: 10.1007/s00220-018-3131-y.![]() ![]() ![]() |
[12] |
R. M. Höfer and J. J. L. Velàzquez, The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains, Arch Rational Mech Anal, 227 (2018), 1165-1221.
doi: 10.1007/s00205-017-1182-4.![]() ![]() ![]() |
[13] |
P. E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Communications in Mathematical Physics, 250 (2004), 415-432.
doi: 10.1007/s00220-004-1126-3.![]() ![]() ![]() |
[14] |
S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Courier Corporation, 2005.
![]() |
[15] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.
doi: 10.1016/j.matpur.2006.01.005.![]() ![]() ![]() |
[16] |
J. H. C. Luke, Convergence of a multiple reflection method for calculating Stokes flow in a suspension, Society for Industrial and Applied Mathematics, 49 (1989), 1635-1651.
doi: 10.1137/0149099.![]() ![]() ![]() |
[17] |
M. Smoluchowski, Über die Wechelwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen, Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Nat., Sér. A Sci. Math, (1911), 28–39.
![]() |
[18] |
C. Villani, Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9.![]() ![]() ![]() |