October  2019, 12(5): 1045-1067. doi: 10.3934/krm.2019039

A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

2. 

Korea Institute for Advanced Study, Hoegiro 87, Seoul 02455, Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

4. 

Mathematisches Institut, Ludwig-Maximilians-Universiät, Theresienstr. 39, Munich 80333, Germany

5. 

Center for Mathematical Sciences, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

* Corresponding author

Received  August 2018 Revised  February 2019 Published  July 2019

We present a probabilistic approach for derivation of the kinetic Cucker-Smale (C-S) equation from the particle C-S model with singular communication. For the system we are considering, it is impossible to validate effective description for certain special initial data, thus such a probabilistic approach is the best one can hope for. More precisely, we consider a system in which kinetic trajectories are deviated from a microscopic model and use a suitable probability measure to quantify the randomness in the initial data. We show that the set of "bad initial data" does in fact have small measure and that this small probability decays to zero algebraically, as $ N $ tends to infinity. For this, we introduce an appropriate cut-off in the communication weight. We also provide a relation between the order of the singularity and the order of the cut-off such that the machinery for deriving classical mean-field limits introduced in [3] can be applied to our setting.

Citation: Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic and Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039
References:
[1]

S. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.

[2]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.

[3]

N. Boers and P. Pickl, On mean field limits for dynamical systems, J. Stat. Phys., 164 (2016), 1-16.  doi: 10.1007/s10955-015-1351-5.

[4]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.

[5]

J. A. Carrillo, Y.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, MMCS, Mathematical Modeling of Complex Systems, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 47 (2014), 17–35. doi: 10.1051/proc/201447002.

[6]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.

[7]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.

[8]

J. A. CarrilloM. R. D' Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.

[9]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.

[10]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552.  doi: 10.1142/S0218202510004684.

[11]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 28 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[12]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39-73.  doi: 10.1142/S0219530515400023.

[13]

Y.-P. Choi, S.-Y. Ha and Z. Li., Emergent dynamics of the Cucker-Smale flocking model and its variants, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkh'áuser/Springer, Cham, 1 (2017) 299–331.

[14]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.

[15]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[16]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[17]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C.R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.

[18]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.

[19]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.

[20]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.

[21]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.  doi: 10.1016/j.physd.2010.08.003.

[22]

S.-Y. Ha, T. Ha and J. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201, 19pp. doi: 10.1088/1751-8113/43/31/315201.

[23]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[24]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[25]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[26]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.

[27]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.

[28]

M. Hauray and P.-E. Jabin, $N$-particles Approximation of the Vlasov Equations with Singular Potential, Arch. Ration. Mech. Anal., 183 (2007), 489-524.  doi: 10.1007/s00205-006-0021-9.

[29]

M. K.-H. Kiessling, The microscopic foundations of Vlasov theory for jellium-like Newtonian $N$-body systems, J. Stat. Phys., 155 (2014), 1299-1328.  doi: 10.1007/s10955-014-0934-x.

[30]

J. Kim and J. Peszek, Cucker-Smale model with a bonding force and singular interaction kernel, preprint.

[31]

D. Lazarovici and P. Pickl, A mean field limit for the Vlasov-Poisson system, Arch. Ration. Mech. Anal., 225 (2017), 1201-1231.  doi: 10.1007/s00205-017-1125-0.

[32]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.

[33]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[34]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: singular communication weight, measure solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.

[35]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.

[36]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control Dynam., 32 (2009), 526-536.  doi: 10.2514/1.36269.

[37]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.

[38]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.  doi: 10.1137/15M1009299.

[39]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.

[40]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.

[41]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

show all references

References:
[1]

S. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.

[2]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.

[3]

N. Boers and P. Pickl, On mean field limits for dynamical systems, J. Stat. Phys., 164 (2016), 1-16.  doi: 10.1007/s10955-015-1351-5.

[4]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.

[5]

J. A. Carrillo, Y.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, MMCS, Mathematical Modeling of Complex Systems, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 47 (2014), 17–35. doi: 10.1051/proc/201447002.

[6]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.

[7]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.

[8]

J. A. CarrilloM. R. D' Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.

[9]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.

[10]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552.  doi: 10.1142/S0218202510004684.

[11]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 28 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.

[12]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39-73.  doi: 10.1142/S0219530515400023.

[13]

Y.-P. Choi, S.-Y. Ha and Z. Li., Emergent dynamics of the Cucker-Smale flocking model and its variants, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkh'áuser/Springer, Cham, 1 (2017) 299–331.

[14]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.

[15]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.

[16]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[17]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C.R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.

[18]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.

[19]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.

[20]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.

[21]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.  doi: 10.1016/j.physd.2010.08.003.

[22]

S.-Y. Ha, T. Ha and J. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201, 19pp. doi: 10.1088/1751-8113/43/31/315201.

[23]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.

[24]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.

[25]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.

[26]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dynam. Differential Equations, 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.

[27]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.

[28]

M. Hauray and P.-E. Jabin, $N$-particles Approximation of the Vlasov Equations with Singular Potential, Arch. Ration. Mech. Anal., 183 (2007), 489-524.  doi: 10.1007/s00205-006-0021-9.

[29]

M. K.-H. Kiessling, The microscopic foundations of Vlasov theory for jellium-like Newtonian $N$-body systems, J. Stat. Phys., 155 (2014), 1299-1328.  doi: 10.1007/s10955-014-0934-x.

[30]

J. Kim and J. Peszek, Cucker-Smale model with a bonding force and singular interaction kernel, preprint.

[31]

D. Lazarovici and P. Pickl, A mean field limit for the Vlasov-Poisson system, Arch. Ration. Mech. Anal., 225 (2017), 1201-1231.  doi: 10.1007/s00205-017-1125-0.

[32]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.

[33]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.

[34]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: singular communication weight, measure solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.

[35]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.

[36]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control Dynam., 32 (2009), 526-536.  doi: 10.2514/1.36269.

[37]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.

[38]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.  doi: 10.1137/15M1009299.

[39]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.

[40]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.

[41]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

[1]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[2]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic and Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[3]

Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim. Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4209-4237. doi: 10.3934/cpaa.2021156

[4]

Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2873-2889. doi: 10.3934/dcdsb.2021164

[5]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[6]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[7]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[8]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[9]

Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic and Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026

[10]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[11]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[12]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[13]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[14]

Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008

[15]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[16]

Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195

[17]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[18]

Moon-Jin Kang, Seung-Yeal Ha, Jeongho Kim, Woojoo Shim. Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1233-1256. doi: 10.3934/cpaa.2020057

[19]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[20]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (301)
  • HTML views (157)
  • Cited by (1)

[Back to Top]