
-
Previous Article
On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks
- KRM Home
- This Issue
-
Next Article
Differentiability in perturbation parameter of measure solutions to perturbed transport equation
Kinetic methods for inverse problems
RWTH Aachen University, Institut für Geometrie und Praktische Mathematik, Templergraben 55, 52062 Aachen, Germany |
The Ensemble Kalman Filter method can be used as an iterative numerical scheme for parameter identification ornonlinear filtering problems. We study the limit of infinitely large ensemble size and derive the corresponding mean-field limit of the ensemble method. The solution of the inverse problem is provided by the expected value of the distribution of the ensembles and the kinetic equation allows, in simple cases, to analyze stability of these solutions. Further, we present a slight but stable modification of the method which leads to a Fokker-Planck-type kinetic equation. The kinetic methods proposed here are able to solve the problem with a reduced computational complexity in the limit of a large ensemble size. We illustrate the properties and the ability of the kinetic model to provide solution to inverse problems by using examples from the literature.
References:
[1] |
S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds and B. Vallès,
The Ensemble Kalman Filter in Reservoir Engineering–a Review, SPE Journal, 14 (2013), 393-412.
doi: 10.2118/117274-PA. |
[2] |
G. Albi and L. Pareschi,
Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), 1-29.
doi: 10.1137/120868748. |
[3] |
A. Apte, M. Hairer, A. M. Stuart and J. Voss,
Sampling the posterior: An approach to non-Gaussian data assimilation, Phys. D, 230 (2007), 50-64.
doi: 10.1016/j.physd.2006.06.009. |
[4] |
J. O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edition, Springer, 1985.
doi: 10.1007/978-1-4757-4286-2. |
[5] |
D. Bianchi, A. Buccini, M. Donatelli and S. Serra-Capizzano, Iterated fractional Tikhonov regularization, Inverse Problems, 31 (2015), 055005, 34pp.
doi: 10.1088/0266-5611/31/5/055005. |
[6] |
D. Bloemker, C. Schillings and P. Wacker,
A strongly convergent numerical scheme from ensemble kalman inversion, SIAM J. Numer. Anal., 56 (2018), 2537-2562.
doi: 10.1137/17M1132367. |
[7] |
D. Bloemker, C. Schillings, P. Wacker and S. Weissman, Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion, 2018, Preprint. arXiv: 1810.08463. Google Scholar |
[8] |
H. Bobovsky and H. Neunzert,
On a simulation scheme for the boltzmann equation, Math. Methods Appl. Sci., 8 (1986), 223-233.
doi: 10.1002/mma.1670080114. |
[9] |
M. Burger and F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators, Inverse Problems, 30 (2014), 114004, 21pp.
doi: 10.1088/0266-5611/30/11/114004. |
[10] |
R. E. Caflisch,
Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7 (1998), 1-49.
doi: 10.1017/S0962492900002804. |
[11] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Chapter Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 297–336, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010.
doi: 10.1007/978-0-8176-4946-3_12. |
[12] |
J. A. Carrillo, L. Pareschi and M. Zanella,
Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), 508-531.
|
[13] |
N. K. Chada and X. T. Stuart A. M. Tong, Tikhonov regularization within ensemble Kalman inversion, 2019, arXiv.org/abs/1901.10382. Google Scholar |
[14] |
E. Cristiani, B. Piccoli and A. Tosin, MS & A: Modeling, Simulation and Applications, vol. 12, chapter Multiscale Modeling of Pedestrian Dynamics, Springer International Publishing, 2014.
doi: 10.1007/978-3-319-06620-2. |
[15] |
M. Dashti and A. M. Stuart, The bayesian approach to inverse problems, Handbook of Uncertainty Quantification, Vol. 1, 2, 3,311–428, Springer, Cham, 2017. |
[16] |
P. Del Moral, A. Kurtzmann and J. Tugaut,
On the stability and the uniform propagation of chaos of a class of Extended Ensemble Kalman-Bucy filters, SIAM J. Control Optim., 55 (2017), 119-155.
doi: 10.1137/16M1087497. |
[17] |
P. Del Moral and J. Tugaut,
On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters, Ann. Appl. Probab., 28 (2018), 790-850.
doi: 10.1214/17-AAP1317. |
[18] |
L. Desvillettes,
On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theor. Stat., 21 (1992), 259-276.
doi: 10.1080/00411459208203923. |
[19] |
R. J. DiPerna and P. L. Lions,
On the Fokker-Planck-Boltzmann equation, Commun. Math. Phys., 120 (1988), 1-23.
doi: 10.1007/BF01223204. |
[20] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, vol. 375, Springer Science and Business Media, 1996. |
[21] |
O. G. Ernst, B. Sprungk and H.-J. Starkloff,
Analysis of the ensemble and polynomial chaos kalman filters in bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 823-851.
doi: 10.1137/140981319. |
[22] |
G. Evensen,
Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics, J. Geophys. Res, 99 (1994), 10143-10162.
doi: 10.1029/94JC00572. |
[23] |
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer Verlag, 2009.
doi: 10.1007/978-3-642-03711-5. |
[24] |
M. Fornasier, J. Haskovec and J. Vybíral,
Particle systems and kinetic equations modeling interacting agents in high dimension, Multiscale Model. Simul., 9 (2011), 1727-1764.
doi: 10.1137/110830617. |
[25] |
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, vol. 105, Pitman Advanced Publishing Program, 1984. |
[26] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[27] |
P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1998.
doi: 10.1137/1.9780898719697. |
[28] |
M. Herty and C. Ringhofer,
Averaged kinetic models for flows on unstructured networks, Kinet. Relat. Models, 4 (2011), 1081-1096.
doi: 10.3934/krm.2011.4.1081. |
[29] |
M. Iglesias,
Iterative regularization for ensemble data assimilation in reservoir models, Computational Geosciences, 19 (2015), 177-212.
doi: 10.1007/s10596-014-9456-5. |
[30] |
M. Iglesias, K. Law and A. M. Stuart, Analysis of the Ensamble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 045001, 20pp.
doi: 10.1088/0266-5611/29/4/045001. |
[31] |
M. Iglesias, K. Law and A. M. Stuart,
Evaluation of Gaussian approximations for data assimilation in reservoir models, Comput. Geosci., 17 (2013), 851-885.
doi: 10.1007/s10596-013-9359-x. |
[32] |
R. E. Kalman,
A new approach to linear filtering and prediction problems, J. Basic Eng.-T. ASME, 82 (1960), 35-45.
doi: 10.1115/1.3662552. |
[33] |
E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 24 (2008), 0125018, 26pp.
doi: 10.1088/0266-5611/24/2/025018. |
[34] |
E. Kwiatkowski and J. Mandel,
Convergence of the square root ensemble Kalman filter in the large ensemble limit, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 1-17.
doi: 10.1137/140965363. |
[35] |
T. Lange and W. Stannat, On the continuous time limit of the ensemble Kalman filter, 2019, arXiv.org/abs/1901.05204. Google Scholar |
[36] |
K. J. H. Law and A. M. Stuart,
Evaluating data assimilation algorithms, Mon. Weather Rev., 140 (2012), 3757-3782.
doi: 10.1175/MWR-D-11-00257.1. |
[37] |
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble kalman filtering, SIAM J. Sci. Comput., 38 (2016), 1251–1279.
doi: 10.1137/140984415. |
[38] |
F. Le Gland, V. Monbet and V.-D. Tran, Large Sample Asymptotics for the Ensemble Kalman Filter, Research Report RR-7014, INRIA, 2009. Google Scholar |
[39] |
M. Lemou,
Multipole expansions for the Fokker-Planck equation, Numer. Math., 78 (1998), 597-618.
doi: 10.1007/s002110050327. |
[40] |
A. J. Majda and X. T. Tong,
Performance of Ensemble Kalman filters in large dimensions, Commun. Pur. Appl. Math., 71 (2018), 892-937.
doi: 10.1002/cpa.21722. |
[41] |
C. Mouhot and L. Pareschi,
Fast algorithms for computing the Boltzmann collision operator, Math. Comput., 75 (2006), 1833-1852.
doi: 10.1090/S0025-5718-06-01874-6. |
[42] |
D. S. Oliver, A. C. Reynolds and N. Liu, Inverse Theory for Petroleum Reservoir Characterization and History Matching, Cambridge University Press, 2008.
doi: 10.1017/CBO9780511535642.![]() |
[43] |
L. Pareschi and G. Russo, An introduction to Monte Carlo methods for the Boltzmann equation, in CEMRACS 1999 (Orsay), ESAIM Proc., Soc. Math. Appl. Indust., Paris, 10 (1999), 35–76.
doi: 10.1051/proc:2001004. |
[44] | L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic equations and Monte Carlo methods, Oxford University Press, 2013. Google Scholar |
[45] |
L. Pareschi, G. Toscani and C. Villani,
Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit, Numer. Math., 93 (2003), 527-548.
doi: 10.1007/s002110100384. |
[46] |
C. Schillings and A. M. Stuart,
Analysis of the ensamble kalman filter for inverse problems, SIAM J. Numer. Anal., 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[47] |
C. Schillings and A. M. Stuart,
Convergence analysis of ensemble Kalman inversion: The linear, noisy case, Applicable Analysis, 97 (2018), 107-123.
doi: 10.1080/00036811.2017.1386784. |
[48] |
A. M. Stuart,
Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061. |
[49] |
G. Toscani,
Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[50] |
T. Trimborn, L. Pareschi and M. Frank, Portfolio optimization and model predictive control: A kinetic approach, 2018, Preprint. arXiv: 1711.03291. Google Scholar |
[51] |
C. Villani,
Conservative forms of Boltzmann's collision operator: Landau revisited, ESAIM Math. Model. Numer. Anal., 33 (1999), 209-227.
doi: 10.1051/m2an:1999112. |
show all references
References:
[1] |
S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds and B. Vallès,
The Ensemble Kalman Filter in Reservoir Engineering–a Review, SPE Journal, 14 (2013), 393-412.
doi: 10.2118/117274-PA. |
[2] |
G. Albi and L. Pareschi,
Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), 1-29.
doi: 10.1137/120868748. |
[3] |
A. Apte, M. Hairer, A. M. Stuart and J. Voss,
Sampling the posterior: An approach to non-Gaussian data assimilation, Phys. D, 230 (2007), 50-64.
doi: 10.1016/j.physd.2006.06.009. |
[4] |
J. O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edition, Springer, 1985.
doi: 10.1007/978-1-4757-4286-2. |
[5] |
D. Bianchi, A. Buccini, M. Donatelli and S. Serra-Capizzano, Iterated fractional Tikhonov regularization, Inverse Problems, 31 (2015), 055005, 34pp.
doi: 10.1088/0266-5611/31/5/055005. |
[6] |
D. Bloemker, C. Schillings and P. Wacker,
A strongly convergent numerical scheme from ensemble kalman inversion, SIAM J. Numer. Anal., 56 (2018), 2537-2562.
doi: 10.1137/17M1132367. |
[7] |
D. Bloemker, C. Schillings, P. Wacker and S. Weissman, Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion, 2018, Preprint. arXiv: 1810.08463. Google Scholar |
[8] |
H. Bobovsky and H. Neunzert,
On a simulation scheme for the boltzmann equation, Math. Methods Appl. Sci., 8 (1986), 223-233.
doi: 10.1002/mma.1670080114. |
[9] |
M. Burger and F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators, Inverse Problems, 30 (2014), 114004, 21pp.
doi: 10.1088/0266-5611/30/11/114004. |
[10] |
R. E. Caflisch,
Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7 (1998), 1-49.
doi: 10.1017/S0962492900002804. |
[11] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Chapter Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 297–336, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010.
doi: 10.1007/978-0-8176-4946-3_12. |
[12] |
J. A. Carrillo, L. Pareschi and M. Zanella,
Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), 508-531.
|
[13] |
N. K. Chada and X. T. Stuart A. M. Tong, Tikhonov regularization within ensemble Kalman inversion, 2019, arXiv.org/abs/1901.10382. Google Scholar |
[14] |
E. Cristiani, B. Piccoli and A. Tosin, MS & A: Modeling, Simulation and Applications, vol. 12, chapter Multiscale Modeling of Pedestrian Dynamics, Springer International Publishing, 2014.
doi: 10.1007/978-3-319-06620-2. |
[15] |
M. Dashti and A. M. Stuart, The bayesian approach to inverse problems, Handbook of Uncertainty Quantification, Vol. 1, 2, 3,311–428, Springer, Cham, 2017. |
[16] |
P. Del Moral, A. Kurtzmann and J. Tugaut,
On the stability and the uniform propagation of chaos of a class of Extended Ensemble Kalman-Bucy filters, SIAM J. Control Optim., 55 (2017), 119-155.
doi: 10.1137/16M1087497. |
[17] |
P. Del Moral and J. Tugaut,
On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters, Ann. Appl. Probab., 28 (2018), 790-850.
doi: 10.1214/17-AAP1317. |
[18] |
L. Desvillettes,
On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theor. Stat., 21 (1992), 259-276.
doi: 10.1080/00411459208203923. |
[19] |
R. J. DiPerna and P. L. Lions,
On the Fokker-Planck-Boltzmann equation, Commun. Math. Phys., 120 (1988), 1-23.
doi: 10.1007/BF01223204. |
[20] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, vol. 375, Springer Science and Business Media, 1996. |
[21] |
O. G. Ernst, B. Sprungk and H.-J. Starkloff,
Analysis of the ensemble and polynomial chaos kalman filters in bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 823-851.
doi: 10.1137/140981319. |
[22] |
G. Evensen,
Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics, J. Geophys. Res, 99 (1994), 10143-10162.
doi: 10.1029/94JC00572. |
[23] |
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer Verlag, 2009.
doi: 10.1007/978-3-642-03711-5. |
[24] |
M. Fornasier, J. Haskovec and J. Vybíral,
Particle systems and kinetic equations modeling interacting agents in high dimension, Multiscale Model. Simul., 9 (2011), 1727-1764.
doi: 10.1137/110830617. |
[25] |
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, vol. 105, Pitman Advanced Publishing Program, 1984. |
[26] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[27] |
P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, 1998.
doi: 10.1137/1.9780898719697. |
[28] |
M. Herty and C. Ringhofer,
Averaged kinetic models for flows on unstructured networks, Kinet. Relat. Models, 4 (2011), 1081-1096.
doi: 10.3934/krm.2011.4.1081. |
[29] |
M. Iglesias,
Iterative regularization for ensemble data assimilation in reservoir models, Computational Geosciences, 19 (2015), 177-212.
doi: 10.1007/s10596-014-9456-5. |
[30] |
M. Iglesias, K. Law and A. M. Stuart, Analysis of the Ensamble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 045001, 20pp.
doi: 10.1088/0266-5611/29/4/045001. |
[31] |
M. Iglesias, K. Law and A. M. Stuart,
Evaluation of Gaussian approximations for data assimilation in reservoir models, Comput. Geosci., 17 (2013), 851-885.
doi: 10.1007/s10596-013-9359-x. |
[32] |
R. E. Kalman,
A new approach to linear filtering and prediction problems, J. Basic Eng.-T. ASME, 82 (1960), 35-45.
doi: 10.1115/1.3662552. |
[33] |
E. Klann and R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Problems, 24 (2008), 0125018, 26pp.
doi: 10.1088/0266-5611/24/2/025018. |
[34] |
E. Kwiatkowski and J. Mandel,
Convergence of the square root ensemble Kalman filter in the large ensemble limit, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 1-17.
doi: 10.1137/140965363. |
[35] |
T. Lange and W. Stannat, On the continuous time limit of the ensemble Kalman filter, 2019, arXiv.org/abs/1901.05204. Google Scholar |
[36] |
K. J. H. Law and A. M. Stuart,
Evaluating data assimilation algorithms, Mon. Weather Rev., 140 (2012), 3757-3782.
doi: 10.1175/MWR-D-11-00257.1. |
[37] |
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble kalman filtering, SIAM J. Sci. Comput., 38 (2016), 1251–1279.
doi: 10.1137/140984415. |
[38] |
F. Le Gland, V. Monbet and V.-D. Tran, Large Sample Asymptotics for the Ensemble Kalman Filter, Research Report RR-7014, INRIA, 2009. Google Scholar |
[39] |
M. Lemou,
Multipole expansions for the Fokker-Planck equation, Numer. Math., 78 (1998), 597-618.
doi: 10.1007/s002110050327. |
[40] |
A. J. Majda and X. T. Tong,
Performance of Ensemble Kalman filters in large dimensions, Commun. Pur. Appl. Math., 71 (2018), 892-937.
doi: 10.1002/cpa.21722. |
[41] |
C. Mouhot and L. Pareschi,
Fast algorithms for computing the Boltzmann collision operator, Math. Comput., 75 (2006), 1833-1852.
doi: 10.1090/S0025-5718-06-01874-6. |
[42] |
D. S. Oliver, A. C. Reynolds and N. Liu, Inverse Theory for Petroleum Reservoir Characterization and History Matching, Cambridge University Press, 2008.
doi: 10.1017/CBO9780511535642.![]() |
[43] |
L. Pareschi and G. Russo, An introduction to Monte Carlo methods for the Boltzmann equation, in CEMRACS 1999 (Orsay), ESAIM Proc., Soc. Math. Appl. Indust., Paris, 10 (1999), 35–76.
doi: 10.1051/proc:2001004. |
[44] | L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic equations and Monte Carlo methods, Oxford University Press, 2013. Google Scholar |
[45] |
L. Pareschi, G. Toscani and C. Villani,
Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit, Numer. Math., 93 (2003), 527-548.
doi: 10.1007/s002110100384. |
[46] |
C. Schillings and A. M. Stuart,
Analysis of the ensamble kalman filter for inverse problems, SIAM J. Numer. Anal., 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[47] |
C. Schillings and A. M. Stuart,
Convergence analysis of ensemble Kalman inversion: The linear, noisy case, Applicable Analysis, 97 (2018), 107-123.
doi: 10.1080/00036811.2017.1386784. |
[48] |
A. M. Stuart,
Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061. |
[49] |
G. Toscani,
Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[50] |
T. Trimborn, L. Pareschi and M. Frank, Portfolio optimization and model predictive control: A kinetic approach, 2018, Preprint. arXiv: 1711.03291. Google Scholar |
[51] |
C. Villani,
Conservative forms of Boltzmann's collision operator: Landau revisited, ESAIM Math. Model. Numer. Anal., 33 (1999), 209-227.
doi: 10.1051/m2an:1999112. |







[1] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[2] |
Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 |
[3] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[4] |
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 |
[5] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[6] |
Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449 |
[7] |
Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428 |
[8] |
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165 |
[9] |
Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351 |
[10] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[11] |
B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463 |
[12] |
Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002 |
[13] |
Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185 |
[14] |
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163 |
[15] |
Zaihui Gan. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1541-1554. doi: 10.3934/cpaa.2009.8.1541 |
[16] |
Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580 |
[17] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[18] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[19] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
[20] |
Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410 |
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]