October  2019, 12(5): 1131-1162. doi: 10.3934/krm.2019043

On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks

a. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

b. 

Department of Mathematics, Jincheng College of Sichuan University, Chengdu 611731, China

Received  January 2019 Revised  March 2019 Published  July 2019

In this paper, we consider a parabolic-elliptic system of partial differential equations in the three dimensional setting that arises in the study of biological transport networks. We establish the local existence of strong solutions and present a blow-up criterion. We also show that the solutions exist globally in time under the some smallness conditions of initial data and of the source.

Citation: Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043
References:
[1]

G. AlbiM. ArtinaM. Foransier and P. Markowich, Biological transportation networks: Modeling and simulation, Analysis Applications, 14 (2016), 1855-206.  doi: 10.1142/S0219530515400059.  Google Scholar

[2]

G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum Modeling of Biological Network Formation, in Active Particles, vol. I. Modeling and Simulation in Science and Technology (eds. N. Bellomo, P. Degond and T. Tamdor), Birkhäuser, Boston, 2017, 1–48.  Google Scholar

[3]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

N. Dengler and J. Kang, Vascular patterning and leaf shape, Current Opinion in Plant Biology, 4 (2001), 50-56.  doi: 10.1016/S1369-5266(00)00135-7.  Google Scholar

[5]

A. EichmannF. Le NobleM. Autiero and P. Carmeliet, Guidance of vascular and neural network formation, Current Opinion in Neurobiology, 15 (2005), 108-115.  doi: 10.1016/j.conb.2005.01.008.  Google Scholar

[6]

A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $ \mathbb R^n$, Journal of Differential Equations, 53 (1984), 258-276.  doi: 10.1016/0022-0396(84)90042-1.  Google Scholar

[7]

J. HaskovecP. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar

[8]

J. HaskovecP. MarkowichB. Perthame and M. Schlottbomc, Notes on a PDE system for biological network formation, Nonlinear Analysis, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar

[9]

D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Physical Review Letters, 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701.  Google Scholar

[10]

D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Notes from lecture, 2014. Google Scholar

[11]

E. Katifori, G. Szollosi and M. Magnasco, Damage and fluctuations induce loops in optimal transport networks, Physical Review Letters, 104 (2010), 048704. doi: 10.1103/PhysRevLett.104.048704.  Google Scholar

[12]

H. Lin and Z. Xiang, Global well-posedness for 2D incompressible magneto-micropolar fluid system with partial viscosity, Sci. China Math., in press, (2019), http://engine.scichina.com/doi/10.1007/s11425-018-9427-6. doi: 10.1007/s11425-018-9427-6.  Google Scholar

[13]

J. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, Journal of Differential Equations, 264 (2018), 5489-5526.  doi: 10.1016/j.jde.2018.01.001.  Google Scholar

[14]

R. Malinowski, Understanding of leaf development-the science of complexity, Plants, 2 (2013), 396-415.  doi: 10.3390/plants2030396.  Google Scholar

[15]

O. Michel and J. Biondi, Morphogenesis of neural networks, Neural Processing Letters, 2 (1995), 9-12.  doi: 10.1007/BF02312376.  Google Scholar

[16]

Y. Peng and Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with finite depth, Math. Models Methods Appl. Sci., 28 (2018), 869-920.  doi: 10.1142/S0218202518500239.  Google Scholar

[17]

Y. Peng and Z. Xiang, Global existence and convergence rates to achemotaxis-fluids system with mixed boundary conditions, Journal of Differential Equations, 267 (2019), 1277-1321.  doi: 10.1016/j.jde.2019.02.007.  Google Scholar

[18]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[19]

X. RenZ. Xiang and Z. Zhang, Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain, Nonlinearity, 29 (2016), 1257-1291.  doi: 10.1088/0951-7715/29/4/1257.  Google Scholar

[20]

X. RenZ. Xiang and Z. Zhang, Global existence and decay of smooth solutions for the 3-D MHD-type equations without magnetic diffusion, Sci. China Math., 59 (2016), 1949-1974.  doi: 10.1007/s11425-016-5145-2.  Google Scholar

[21]

D. Sedmera, Function and form in the developing cardiovascular system, Cardiovascular Research, 91 (2011), 252-259.  doi: 10.1093/cvr/cvr062.  Google Scholar

[22]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[23]

X. Xu, Life-span of smooth solutions to a PDE system with cubic nonlinearity, preprint, arXiv: 1706.06057. Google Scholar

[24]

X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinetic and Related Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar

show all references

References:
[1]

G. AlbiM. ArtinaM. Foransier and P. Markowich, Biological transportation networks: Modeling and simulation, Analysis Applications, 14 (2016), 1855-206.  doi: 10.1142/S0219530515400059.  Google Scholar

[2]

G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum Modeling of Biological Network Formation, in Active Particles, vol. I. Modeling and Simulation in Science and Technology (eds. N. Bellomo, P. Degond and T. Tamdor), Birkhäuser, Boston, 2017, 1–48.  Google Scholar

[3]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[4]

N. Dengler and J. Kang, Vascular patterning and leaf shape, Current Opinion in Plant Biology, 4 (2001), 50-56.  doi: 10.1016/S1369-5266(00)00135-7.  Google Scholar

[5]

A. EichmannF. Le NobleM. Autiero and P. Carmeliet, Guidance of vascular and neural network formation, Current Opinion in Neurobiology, 15 (2005), 108-115.  doi: 10.1016/j.conb.2005.01.008.  Google Scholar

[6]

A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $ \mathbb R^n$, Journal of Differential Equations, 53 (1984), 258-276.  doi: 10.1016/0022-0396(84)90042-1.  Google Scholar

[7]

J. HaskovecP. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792.  Google Scholar

[8]

J. HaskovecP. MarkowichB. Perthame and M. Schlottbomc, Notes on a PDE system for biological network formation, Nonlinear Analysis, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018.  Google Scholar

[9]

D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Physical Review Letters, 111 (2013), 138701. doi: 10.1103/PhysRevLett.111.138701.  Google Scholar

[10]

D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Notes from lecture, 2014. Google Scholar

[11]

E. Katifori, G. Szollosi and M. Magnasco, Damage and fluctuations induce loops in optimal transport networks, Physical Review Letters, 104 (2010), 048704. doi: 10.1103/PhysRevLett.104.048704.  Google Scholar

[12]

H. Lin and Z. Xiang, Global well-posedness for 2D incompressible magneto-micropolar fluid system with partial viscosity, Sci. China Math., in press, (2019), http://engine.scichina.com/doi/10.1007/s11425-018-9427-6. doi: 10.1007/s11425-018-9427-6.  Google Scholar

[13]

J. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, Journal of Differential Equations, 264 (2018), 5489-5526.  doi: 10.1016/j.jde.2018.01.001.  Google Scholar

[14]

R. Malinowski, Understanding of leaf development-the science of complexity, Plants, 2 (2013), 396-415.  doi: 10.3390/plants2030396.  Google Scholar

[15]

O. Michel and J. Biondi, Morphogenesis of neural networks, Neural Processing Letters, 2 (1995), 9-12.  doi: 10.1007/BF02312376.  Google Scholar

[16]

Y. Peng and Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with finite depth, Math. Models Methods Appl. Sci., 28 (2018), 869-920.  doi: 10.1142/S0218202518500239.  Google Scholar

[17]

Y. Peng and Z. Xiang, Global existence and convergence rates to achemotaxis-fluids system with mixed boundary conditions, Journal of Differential Equations, 267 (2019), 1277-1321.  doi: 10.1016/j.jde.2019.02.007.  Google Scholar

[18]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[19]

X. RenZ. Xiang and Z. Zhang, Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain, Nonlinearity, 29 (2016), 1257-1291.  doi: 10.1088/0951-7715/29/4/1257.  Google Scholar

[20]

X. RenZ. Xiang and Z. Zhang, Global existence and decay of smooth solutions for the 3-D MHD-type equations without magnetic diffusion, Sci. China Math., 59 (2016), 1949-1974.  doi: 10.1007/s11425-016-5145-2.  Google Scholar

[21]

D. Sedmera, Function and form in the developing cardiovascular system, Cardiovascular Research, 91 (2011), 252-259.  doi: 10.1093/cvr/cvr062.  Google Scholar

[22]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[23]

X. Xu, Life-span of smooth solutions to a PDE system with cubic nonlinearity, preprint, arXiv: 1706.06057. Google Scholar

[24]

X. Xu, Regularity theorems for a biological network formulation model in two space dimensions, Kinetic and Related Models, 11 (2018), 397-408.  doi: 10.3934/krm.2018018.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[11]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[12]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[13]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[14]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[15]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[16]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[17]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[18]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[19]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (100)
  • HTML views (145)
  • Cited by (3)

Other articles
by authors

[Back to Top]