In this note we prove that, under some minimal regularity assumptions on the initial datum, solutions to the spatially homogenous Boltzmann and Landau equations for hard potentials uniformly propagate the Fisher information. The proof of such a result is based upon some explicit pointwise lower bound on solutions to Boltzmann equation and strong diffusion properties for the Landau equation. We include an application of this result related to emergence and propagation of exponential tails for the solution's gradient. These results complement estimates provided in [
Citation: |
[1] |
R. Alonso, V. Bagland and B. Lods, Convergence to self-similarity for ballistic annihilation dynamics, preprint, https://arXiv.org/abs/1804.06192, 2018.
![]() |
[2] |
R. Alonso, J. A. Cañizo, I. M. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, 38 (2013), 155-169.
doi: 10.1080/03605302.2012.715707.![]() ![]() ![]() |
[3] |
R. Alonso, E. Carneiro and I. M. Gamba, Convolution inequalities for the Boltzmann collision operator, Comm. Math. Phys., 298 (2010), 293-322.
doi: 10.1007/s00220-010-1065-0.![]() ![]() ![]() |
[4] |
R. Alonso and I. M. Gamba, Gain of integrability for the Boltzmann collisional operator, Kinet. Relat. Models, 4 (2011), 41-51.
doi: 10.3934/krm.2011.4.41.![]() ![]() ![]() |
[5] |
R. Alonso, I. M. Gamba and M. Tasković, Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation, preprint, https://arXiv.org/abs/1711.06596v1, 2017.
![]() |
[6] |
R. Alonso and B. Lods, Free cooling and high-energy tails of granular gases with variable restitution coefficient, SIAM J. Math. Anal., 42 (2010), 2499-2538.
doi: 10.1137/100793979.![]() ![]() ![]() |
[7] |
F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel, Revista Mat. Iberoam., 14 (1998), 47-61.
doi: 10.4171/RMI/233.![]() ![]() ![]() |
[8] |
E. A. Carlen and M. C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Stat. Phys., 67 (1992), 575-608.
doi: 10.1007/BF01049721.![]() ![]() ![]() |
[9] |
E. A. Carlen and M. C. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys., 74 (1994), 743-782.
doi: 10.1007/BF02188578.![]() ![]() ![]() |
[10] |
E. A. Carlen, E. Gabetta and G. Toscani, Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Comm. Math. Phys., 199 (1999), 521-546.
doi: 10.1007/s002200050511.![]() ![]() ![]() |
[11] |
K. Carrapatoso, On the rate of convergence to equilibrium for the homogeneous Landau equation with soft potentials, J. Math. Pures Appl., 104 (2015), 276-310.
doi: 10.1016/j.matpur.2015.02.008.![]() ![]() ![]() |
[12] |
J. A. Carrillo and G. Toscani, Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations, Math. Methods Appl. Sci., 21 (1998), 1269-1286.
doi: 10.1002/(SICI)1099-1476(19980910)21:13<1269::AID-MMA995>3.3.CO;2-F.![]() ![]() ![]() |
[13] |
J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.
doi: 10.1007/s006050170032.![]() ![]() ![]() |
[14] |
L. Desvillettes,, Entropy dissipation estimates for the Landau equation: General cross sections, in From Particle Systems to Partial Differential Equations III (eds. P. Gonçalves P., A. Soares), Springer Proceedings in Mathematics and Statistics, Springer, 162 (2016), 121–143.
doi: 10.1007/978-3-319-32144-8_6.![]() ![]() ![]() |
[15] |
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259.
doi: 10.1080/03605300008821512.![]() ![]() ![]() |
[16] |
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part Ⅱ: H theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298.
doi: 10.1080/03605300008821513.![]() ![]() ![]() |
[17] |
R. A. Fisher,, Theory of statistical estimation, Proc. Cambridge Philos. Soc., 22 (1925) 700–725.
![]() |
[18] |
E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, AMS, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
[19] |
C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Rational Mech. Anal., 173 (2004), 169-212.
doi: 10.1007/s00205-004-0316-7.![]() ![]() ![]() |
[20] |
A. Pulvirenti and B. Wennberg, A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys., 183 (1997), 145-160.
doi: 10.1007/BF02509799.![]() ![]() ![]() |
[21] |
G. Toscani, New a priori estimates for the spatially homogeneous Boltzmann equation, Cont. Mech. Thermodyn., 4 (1992), 81-93.
doi: 10.1007/BF01125691.![]() ![]() ![]() |
[22] |
G. Toscani, Strong convergence in Lp for a spatially homogeneous Maxwell gas with cut-off, Transp. Theory Stat. Phys., 24 (1995), 319-328.
doi: 10.1080/00411459508205132.![]() ![]() ![]() |
[23] |
G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a prior bounds, J. Statist. Phys., 98 (2000), 1279-1309.
doi: 10.1023/A:1018623930325.![]() ![]() ![]() |
[24] |
C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., 8 (1998), 957-983.
doi: 10.1142/S0218202598000433.![]() ![]() ![]() |
[25] |
C. Villani, Decrease of the Fisher information for solutions of the spatially homogeneous Landau equation with Maxwellian molecules, Math. Models Methods Appl. Sci., 10 (2000), 153-161.
doi: 10.1142/S0218202500000100.![]() ![]() ![]() |
[26] |
C. Villani, Fisher information estimates for Boltzmann's collision operator, J. Math. Pures Appl., 77 (1998), 821-837.
doi: 10.1016/S0021-7824(98)80010-X.![]() ![]() ![]() |
[27] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1.![]() ![]() ![]() |
[28] |
B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Stat. Phys., 86 (1997), 1053-1066.
doi: 10.1007/BF02183613.![]() ![]() ![]() |